1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283-------------------------------------------------------------------------- The Agda standard library---- Natural numbers: properties of sum and product---- Issue #2553: this is a compatibility stub module,-- ahead of a more thorough breaking set of changes.------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Nat.ListAction.Properties where open import Algebra.Bundles using (CommutativeMonoid)open import Data.List.Base using (List; []; _∷_; _++_)open import Data.List.Membership.Propositional using (_∈_)open import Data.List.Relation.Binary.Permutation.Propositional using (_↭_; ↭⇒↭ₛ)open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (foldr-commMonoid)open import Data.List.Relation.Unary.All using (All; []; _∷_)open import Data.List.Relation.Unary.Any using (here; there)open import Data.Nat.Base using (ℕ; _+_; _*_; NonZero; _≤_)open import Data.Nat.Divisibility using (_∣_; m∣m*n; ∣n⇒∣m*n)open import Data.Nat.ListAction using (sum; product)open import Data.Nat.Properties using (+-assoc; *-assoc; *-identityˡ; m*n≢0; m≤m*n; m≤n⇒m≤o*n ; +-0-commutativeMonoid; *-1-commutativeMonoid)open import Relation.Binary.Core using (_Preserves_⟶_)open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; sym; cong)open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning) private variable m n : ℕ ms ns : List ℕ -------------------------------------------------------------------------- Properties -- sum sum-++ : ∀ ms ns → sum (ms ++ ns) ≡ sum ms + sum nssum-++ [] ns = reflsum-++ (m ∷ ms) ns = begin m + sum (ms ++ ns) ≡⟨ cong (m +_) (sum-++ ms ns) ⟩ m + (sum ms + sum ns) ≡⟨ +-assoc m _ _ ⟨ (m + sum ms) + sum ns ∎ where open ≡-Reasoning sum-↭ : sum Preserves _↭_ ⟶ _≡_sum-↭ p = foldr-commMonoid ℕ-+-0.setoid ℕ-+-0.isCommutativeMonoid (↭⇒↭ₛ p) where module ℕ-+-0 = CommutativeMonoid +-0-commutativeMonoid -- product product-++ : ∀ ms ns → product (ms ++ ns) ≡ product ms * product nsproduct-++ [] ns = sym (*-identityˡ _)product-++ (m ∷ ms) ns = begin m * product (ms ++ ns) ≡⟨ cong (m *_) (product-++ ms ns) ⟩ m * (product ms * product ns) ≡⟨ *-assoc m _ _ ⟨ (m * product ms) * product ns ∎ where open ≡-Reasoning ∈⇒∣product : n ∈ ns → n ∣ product ns∈⇒∣product {ns = n ∷ ns} (here refl) = m∣m*n (product ns)∈⇒∣product {ns = m ∷ ns} (there n∈ns) = ∣n⇒∣m*n m (∈⇒∣product n∈ns) product≢0 : All NonZero ns → NonZero (product ns)product≢0 [] = _product≢0 (n≢0 ∷ ns≢0) = m*n≢0 _ _ {{n≢0}} {{product≢0 ns≢0}} ∈⇒≤product : All NonZero ns → n ∈ ns → n ≤ product ns∈⇒≤product (n≢0 ∷ ns≢0) (here refl) = m≤m*n _ _ {{product≢0 ns≢0}}∈⇒≤product (n≢0 ∷ ns≢0) (there n∈ns) = m≤n⇒m≤o*n _ {{n≢0}} (∈⇒≤product ns≢0 n∈ns) product-↭ : product Preserves _↭_ ⟶ _≡_product-↭ p = foldr-commMonoid ℕ-*-1.setoid ℕ-*-1.isCommutativeMonoid (↭⇒↭ₛ p) where module ℕ-*-1 = CommutativeMonoid *-1-commutativeMonoid