← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
------------------------------------------------------------------------
-- The Agda standard library
--
-- Core definition of divisibility
------------------------------------------------------------------------
 
-- The definition of divisibility is split out from
-- `Data.Nat.Divisibility` to avoid a dependency cycle with
-- `Data.Nat.DivMod`.
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Data.Nat.Divisibility.Core where
 
open import Data.Nat.Base using (ℕ; _*_; _<_; NonTrivial)
open import Data.Nat.Properties
open import Relation.Nullary.Negation using (¬_)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.PropositionalEquality.Core
using (_≡_; refl)
 
 
private
variable m n o p : ℕ
 
------------------------------------------------------------------------
-- Main definition
--
-- m ∣ n is inhabited iff m divides n. Some sources, like Hardy and
-- Wright's "An Introduction to the Theory of Numbers", require m to
-- be non-zero. However, some things become a bit nicer if m is
-- allowed to be zero. For instance, _∣_ becomes a partial order, and
-- the gcd of 0 and 0 becomes defined.
 
infix 4 _∣_ _∤_
 
record _∣_ (m n : ℕ) : Set where
constructor divides
field quotient : ℕ
equality : n ≡ quotient * m
 
_∤_ : Rel ℕ _
m ∤ n = ¬ (m ∣ n)
 
-- Smart constructor
 
pattern divides-refl q = divides q refl
 
open _∣_ using (quotient) public
 
------------------------------------------------------------------------
-- Restricted divisor relation
 
-- Relation for having a non-trivial divisor below a given bound.
-- Useful when reasoning about primality.
infix 10 _HasNonTrivialDivisorLessThan_
 
record _HasNonTrivialDivisorLessThan_ (m n : ℕ) : Set where
constructor hasNonTrivialDivisor
field
{divisor} : ℕ
.{{nontrivial}} : NonTrivial divisor
divisor-< : divisor < n
divisor-∣ : divisor ∣ m
 
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
 
-- Version 2.1
 
*-pres-∣ : o ∣ m → p ∣ n → o * p ∣ m * n
*-pres-∣ {o} {m@.(q * o)} {p} {n@.(r * p)} (divides-refl q) (divides-refl r) =
divides (q * r) ([m*n]*[o*p]≡[m*o]*[n*p] q o r p)
 
{-# WARNING_ON_USAGE *-pres-∣
"Warning: *-pres-∣ was deprecated in v2.1.
Please use Data.Nat.Divisibility.*-pres-∣ instead."
#-}