← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
------------------------------------------------------------------------
-- The Agda standard library
--
-- List membership and some related definitions
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Relation.Binary.Bundles using (Setoid)
 
module Data.List.Membership.Setoid {c ℓ} (S : Setoid c ℓ) where
 
open import Data.List.Base using (List; []; _∷_)
open import Data.List.Relation.Unary.Any as Any
using (Any; map; here; there)
open import Data.Product.Base as Product using (∃; _×_; _,_)
open import Function.Base using (_∘_; flip; const)
open import Relation.Binary.Definitions using (_Respects_)
open import Relation.Nullary.Negation using (¬_)
open import Relation.Unary using (Pred)
 
open Setoid S renaming (Carrier to A)
 
------------------------------------------------------------------------
-- Definitions
 
infix 4 _∈_ _∉_
 
_∈_ : A → List A → Set _
x ∈ xs = Any (x ≈_) xs
 
_∉_ : A → List A → Set _
x ∉ xs = ¬ x ∈ xs
 
------------------------------------------------------------------------
-- Operations
 
_∷=_ = Any._∷=_ {A = A}
_─_ = Any._─_ {A = A}
 
mapWith∈ : ∀ {b} {B : Set b}
(xs : List A) → (∀ {x} → x ∈ xs → B) → List B
mapWith∈ [] f = []
mapWith∈ (x ∷ xs) f = f (here refl) ∷ mapWith∈ xs (f ∘ there)
 
------------------------------------------------------------------------
-- Finding and losing witnesses
 
module _ {p} {P : Pred A p} where
 
find : ∀ {xs} → Any P xs → ∃ λ x → x ∈ xs × P x
find (here px) = _ , here refl , px
find (there pxs) = let x , x∈xs , px = find pxs in x , there x∈xs , px
 
lose : P Respects _≈_ → ∀ {x xs} → x ∈ xs → P x → Any P xs
lose resp x∈xs px = map (flip resp px) x∈xs