← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
------------------------------------------------------------------------
-- The Agda standard library
--
-- Maybes where all the elements satisfy a given property
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Data.Maybe.Relation.Unary.All where
 
open import Effect.Applicative
open import Effect.Monad
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Maybe.Relation.Unary.Any using (Any; just)
open import Data.Product.Base as Product using (_,_)
open import Function.Base using (id; _∘′_)
open import Function.Bundles using (_⇔_; mk⇔)
open import Level
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong)
open import Relation.Unary
open import Relation.Nullary hiding (Irrelevant)
import Relation.Nullary.Decidable as Dec
 
------------------------------------------------------------------------
-- Definition
 
data All {a p} {A : Set a} (P : Pred A p) : Pred (Maybe A) (a ⊔ p) where
just : ∀ {x} → P x → All P (just x)
nothing : All P nothing
 
------------------------------------------------------------------------
-- Basic operations
 
module _ {a p} {A : Set a} {P : Pred A p} where
 
drop-just : ∀ {x} → All P (just x) → P x
drop-just (just px) = px
 
just-equivalence : ∀ {x} → P x ⇔ All P (just x)
just-equivalence = mk⇔ just drop-just
 
map : ∀ {q} {Q : Pred A q} → P ⊆ Q → All P ⊆ All Q
map f (just px) = just (f px)
map f nothing = nothing
 
fromAny : Any P ⊆ All P
fromAny (just px) = just px
 
------------------------------------------------------------------------
-- (un/)zip(/With)
 
module _ {a p q r} {A : Set a} {P : Pred A p} {Q : Pred A q} {R : Pred A r} where
 
zipWith : P ∩ Q ⊆ R → All P ∩ All Q ⊆ All R
zipWith f (just px , just qx) = just (f (px , qx))
zipWith f (nothing , nothing) = nothing
 
unzipWith : P ⊆ Q ∩ R → All P ⊆ All Q ∩ All R
unzipWith f (just px) = Product.map just just (f px)
unzipWith f nothing = nothing , nothing
 
module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where
 
zip : All P ∩ All Q ⊆ All (P ∩ Q)
zip = zipWith id
 
unzip : All (P ∩ Q) ⊆ All P ∩ All Q
unzip = unzipWith id
 
------------------------------------------------------------------------
-- Traversable-like functions
 
module _ {a f} p {A : Set a} {P : Pred A (a ⊔ p)} {F}
(App : RawApplicative {a ⊔ p} {f} F) where
 
open RawApplicative App
 
sequenceA : All (F ∘′ P) ⊆ F ∘′ All P
sequenceA nothing = pure nothing
sequenceA (just px) = just <$> px
 
mapA : ∀ {q} {Q : Pred A q} → (Q ⊆ F ∘′ P) → All Q ⊆ (F ∘′ All P)
mapA f = sequenceA ∘′ map f
 
forA : ∀ {q} {Q : Pred A q} {xs} → All Q xs → (Q ⊆ F ∘′ P) → F (All P xs)
forA qxs f = mapA f qxs
 
module _ {a f} p {A : Set a} {P : Pred A (a ⊔ p)} {M}
(Mon : RawMonad {a ⊔ p} {f} M) where
 
private App = RawMonad.rawApplicative Mon
 
sequenceM : All (M ∘′ P) ⊆ M ∘′ All P
sequenceM = sequenceA p App
 
mapM : ∀ {q} {Q : Pred A q} → (Q ⊆ M ∘′ P) → All Q ⊆ (M ∘′ All P)
mapM = mapA p App
 
forM : ∀ {q} {Q : Pred A q} {xs} → All Q xs → (Q ⊆ M ∘′ P) → M (All P xs)
forM = forA p App
 
------------------------------------------------------------------------
-- Seeing All as a predicate transformer
 
module _ {a p} {A : Set a} {P : Pred A p} where
 
dec : Decidable P → Decidable (All P)
dec P-dec nothing = yes nothing
dec P-dec (just x) = Dec.map just-equivalence (P-dec x)
 
universal : Universal P → Universal (All P)
universal P-universal (just x) = just (P-universal x)
universal P-universal nothing = nothing
 
irrelevant : Irrelevant P → Irrelevant (All P)
irrelevant P-irrelevant (just p) (just q) = cong just (P-irrelevant p q)
irrelevant P-irrelevant nothing nothing = refl
 
satisfiable : Satisfiable (All P)
satisfiable = nothing , nothing