← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
------------------------------------------------------------------------
-- The Agda standard library
--
-- Maybes where one of the elements satisfies a given property
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Data.Maybe.Relation.Unary.Any where
 
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Product.Base as Product using (∃; _,_; -,_)
open import Function.Base using (id)
open import Function.Bundles using (_⇔_; mk⇔)
open import Level
open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong)
open import Relation.Unary
open import Relation.Nullary hiding (Irrelevant)
import Relation.Nullary.Decidable as Dec
 
------------------------------------------------------------------------
-- Definition
 
data Any {a p} {A : Set a} (P : Pred A p) : Pred (Maybe A) (a ⊔ p) where
just : ∀ {x} → P x → Any P (just x)
 
------------------------------------------------------------------------
-- Basic operations
 
module _ {a p} {A : Set a} {P : Pred A p} where
 
drop-just : ∀ {x} → Any P (just x) → P x
drop-just (just px) = px
 
just-equivalence : ∀ {x} → P x ⇔ Any P (just x)
just-equivalence = mk⇔ just drop-just
 
map : ∀ {q} {Q : Pred A q} → P ⊆ Q → Any P ⊆ Any Q
map f (just px) = just (f px)
 
satisfied : ∀ {x} → Any P x → ∃ P
satisfied (just p) = -, p
 
------------------------------------------------------------------------
-- (un/)zip(/With)
 
module _ {a p q r} {A : Set a} {P : Pred A p} {Q : Pred A q} {R : Pred A r} where
 
zipWith : P ∩ Q ⊆ R → Any P ∩ Any Q ⊆ Any R
zipWith f (just px , just qx) = just (f (px , qx))
 
unzipWith : P ⊆ Q ∩ R → Any P ⊆ Any Q ∩ Any R
unzipWith f (just px) = Product.map just just (f px)
 
module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where
 
zip : Any P ∩ Any Q ⊆ Any (P ∩ Q)
zip = zipWith id
 
unzip : Any (P ∩ Q) ⊆ Any P ∩ Any Q
unzip = unzipWith id
 
------------------------------------------------------------------------
-- Seeing Any as a predicate transformer
 
module _ {a p} {A : Set a} {P : Pred A p} where
 
dec : Decidable P → Decidable (Any P)
dec P-dec nothing = no λ ()
dec P-dec (just x) = Dec.map just-equivalence (P-dec x)
 
irrelevant : Irrelevant P → Irrelevant (Any P)
irrelevant P-irrelevant (just p) (just q) = cong just (P-irrelevant p q)
 
satisfiable : Satisfiable P → Satisfiable (Any P)
satisfiable P-satisfiable = Product.map just just P-satisfiable