← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
------------------------------------------------------------------------
-- The Agda standard library
--
-- Functors
------------------------------------------------------------------------
 
-- Note that currently the functor laws are not included here.
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Effect.Functor where
 
open import Data.Unit.Polymorphic.Base using (⊤)
open import Function.Base using (const; flip)
open import Level
 
open import Relation.Binary.PropositionalEquality.Core using (_≡_)
 
private
variable
ℓ ℓ′ ℓ″ : Level
A B X Y : Set ℓ
 
record RawFunctor (F : Set ℓ → Set ℓ′) : Set (suc ℓ ⊔ ℓ′) where
infixl 4 _<$>_ _<$_
infixl 1 _<&>_
field
_<$>_ : (A → B) → F A → F B
 
_<$_ : A → F B → F A
x <$ y = const x <$> y
 
_<&>_ : F A → (A → B) → F B
_<&>_ = flip _<$>_
 
ignore : F A → F ⊤
ignore = _ <$_
 
-- A functor morphism from F₁ to F₂ is an operation op such that
-- op (F₁ f x) ≡ F₂ f (op x)
 
record Morphism {F₁ : Set ℓ → Set ℓ′} {F₂ : Set ℓ → Set ℓ″}
(fun₁ : RawFunctor F₁)
(fun₂ : RawFunctor F₂) : Set (suc ℓ ⊔ ℓ′ ⊔ ℓ″) where
open RawFunctor
field
op : F₁ X → F₂ X
op-<$> : (f : X → Y) (x : F₁ X) →
op (fun₁ ._<$>_ f x) ≡ fun₂ ._<$>_ f (op x)