← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
123456789101112131415161718192021222324252627282930313233343536
------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" using a preorder
------------------------------------------------------------------------
 
-- Example uses:
--
-- u∼y : u ∼ y
-- u∼y = begin
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ∼⟨ w∼y ⟩
-- y ≈⟨ z≈y ⟩
-- z ∎
--
-- u≈w : u ≈ w
-- u≈w = begin-equality
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ≡⟨ x≡w ⟨
-- x ∎
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Relation.Binary.Bundles using (Preorder)
 
module Relation.Binary.Reasoning.Preorder
{p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where
 
open Preorder P
 
------------------------------------------------------------------------
-- Publicly re-export the contents of the base module
 
open import Relation.Binary.Reasoning.Base.Double isPreorder public