123456789101112131415161718192021222324252627282930313233343536-------------------------------------------------------------------------- The Agda standard library---- Convenient syntax for "equational reasoning" using a preorder------------------------------------------------------------------------ -- Example uses:---- u∼y : u ∼ y-- u∼y = begin-- u ≈⟨ u≈v ⟩-- v ≡⟨ v≡w ⟩-- w ∼⟨ w∼y ⟩-- y ≈⟨ z≈y ⟩-- z ∎---- u≈w : u ≈ w-- u≈w = begin-equality-- u ≈⟨ u≈v ⟩-- v ≡⟨ v≡w ⟩-- w ≡⟨ x≡w ⟨-- x ∎ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Bundles using (Preorder) module Relation.Binary.Reasoning.Preorder {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open Preorder P -------------------------------------------------------------------------- Publicly re-export the contents of the base module open import Relation.Binary.Reasoning.Base.Double isPreorder public