123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101-------------------------------------------------------------------------- The Agda standard library---- The basic code for equational reasoning with two relations:-- equality and some other ordering.---------------------------------------------------------------------------- See `Data.Nat.Properties` or `Relation.Binary.Reasoning.PartialOrder`-- for examples of how to instantiate this module. {-# OPTIONS --cubical-compatible --safe #-} open import Level using (_⊔_)open import Function.Base using (case_of_)open import Relation.Nullary.Decidable.Core using (Dec; yes; no)open import Relation.Binary.Core using (Rel; _⇒_)open import Relation.Binary.Definitions using (Reflexive; Trans)open import Relation.Binary.Structures using (IsPreorder)open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_)open import Relation.Binary.Reasoning.Syntax module Relation.Binary.Reasoning.Base.Double {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_≲_ : Rel A ℓ₂} (isPreorder : IsPreorder _≈_ _≲_) where open IsPreorder isPreorder -------------------------------------------------------------------------- A datatype to hide the current relation type infix 4 _IsRelatedTo_ data _IsRelatedTo_ (x y : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where nonstrict : (x≲y : x ≲ y) → x IsRelatedTo y equals : (x≈y : x ≈ y) → x IsRelatedTo y start : _IsRelatedTo_ ⇒ _≲_start (equals x≈y) = reflexive x≈ystart (nonstrict x≲y) = x≲y ≡-go : Trans _≡_ _IsRelatedTo_ _IsRelatedTo_≡-go x≡y (equals y≈z) = equals (case x≡y of λ where ≡.refl → y≈z)≡-go x≡y (nonstrict y≤z) = nonstrict (case x≡y of λ where ≡.refl → y≤z) ≲-go : Trans _≲_ _IsRelatedTo_ _IsRelatedTo_≲-go x≲y (equals y≈z) = nonstrict (∼-respʳ-≈ y≈z x≲y)≲-go x≲y (nonstrict y≲z) = nonstrict (trans x≲y y≲z) ≈-go : Trans _≈_ _IsRelatedTo_ _IsRelatedTo_≈-go x≈y (equals y≈z) = equals (Eq.trans x≈y y≈z)≈-go x≈y (nonstrict y≲z) = nonstrict (∼-respˡ-≈ (Eq.sym x≈y) y≲z) stop : Reflexive _IsRelatedTo_stop = equals Eq.refl -------------------------------------------------------------------------- A record that is used to ensure that the final relation proved by the-- chain of reasoning can be converted into the required relation. data IsEquality {x y} : x IsRelatedTo y → Set (a ⊔ ℓ₁ ⊔ ℓ₂) where isEquality : ∀ x≈y → IsEquality (equals x≈y) IsEquality? : ∀ {x y} (x≲y : x IsRelatedTo y) → Dec (IsEquality x≲y)IsEquality? (nonstrict _) = no λ()IsEquality? (equals x≈y) = yes (isEquality x≈y) extractEquality : ∀ {x y} {x≲y : x IsRelatedTo y} → IsEquality x≲y → x ≈ yextractEquality (isEquality x≈y) = x≈y equalitySubRelation : SubRelation _IsRelatedTo_ _ _equalitySubRelation = record { IsS = IsEquality ; IsS? = IsEquality? ; extract = extractEquality } -------------------------------------------------------------------------- Reasoning combinators open begin-syntax _IsRelatedTo_ start publicopen begin-equality-syntax _IsRelatedTo_ equalitySubRelation publicopen ≡-syntax _IsRelatedTo_ ≡-go publicopen ≈-syntax _IsRelatedTo_ _IsRelatedTo_ ≈-go Eq.sym publicopen ≲-syntax _IsRelatedTo_ _IsRelatedTo_ ≲-go publicopen end-syntax _IsRelatedTo_ stop public -------------------------------------------------------------------------- DEPRECATED NAMES-------------------------------------------------------------------------- Please use the new names as continuing support for the old names is-- not guaranteed. -- Version 2.0 open ∼-syntax _IsRelatedTo_ _IsRelatedTo_ ≲-go public{-# WARNING_ON_USAGE step-∼"Warning: step-∼ and _∼⟨_⟩_ syntax was deprecated in v2.0.Please use step-≲ and _≲⟨_⟩_ instead. "#-}