← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
------------------------------------------------------------------------
-- The Agda standard library
--
-- Argument information used in the reflection machinery
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Reflection.AST.Argument.Information where
 
open import Data.Product.Base using (_×_; <_,_>; uncurry)
open import Relation.Nullary.Decidable.Core using (map′; _×-dec_)
open import Relation.Binary.Definitions using (DecidableEquality)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong₂)
 
open import Reflection.AST.Argument.Modality as Modality using (Modality)
open import Reflection.AST.Argument.Visibility as Visibility using (Visibility)
 
private
variable
v v′ : Visibility
m m′ : Modality
 
------------------------------------------------------------------------
-- Re-exporting the builtins publicly
 
open import Agda.Builtin.Reflection public using (ArgInfo)
open ArgInfo public
 
------------------------------------------------------------------------
-- Operations
 
visibility : ArgInfo → Visibility
visibility (arg-info v _) = v
 
modality : ArgInfo → Modality
modality (arg-info _ m) = m
 
------------------------------------------------------------------------
-- Decidable equality
 
arg-info-injective₁ : arg-info v m ≡ arg-info v′ m′ → v ≡ v′
arg-info-injective₁ refl = refl
 
arg-info-injective₂ : arg-info v m ≡ arg-info v′ m′ → m ≡ m′
arg-info-injective₂ refl = refl
 
arg-info-injective : arg-info v m ≡ arg-info v′ m′ → v ≡ v′ × m ≡ m′
arg-info-injective = < arg-info-injective₁ , arg-info-injective₂ >
 
infix 4 _≟_
 
_≟_ : DecidableEquality ArgInfo
arg-info v m ≟ arg-info v′ m′ =
map′
(uncurry (cong₂ arg-info))
arg-info-injective
(v Visibility.≟ v′ ×-dec m Modality.≟ m′)