← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
------------------------------------------------------------------------
-- The Agda standard library
--
-- Modalities used in the reflection machinery
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Reflection.AST.Argument.Modality where
 
open import Data.Product.Base using (_×_; <_,_>; uncurry)
open import Relation.Nullary.Decidable.Core using (map′; _×-dec_)
open import Relation.Binary.Definitions using (DecidableEquality)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong₂)
 
open import Reflection.AST.Argument.Relevance as Relevance using (Relevance)
open import Reflection.AST.Argument.Quantity as Quantity using (Quantity)
 
private
variable
r r′ : Relevance
q q′ : Quantity
 
------------------------------------------------------------------------
-- Re-exporting the builtins publicly
 
open import Agda.Builtin.Reflection public using (Modality)
open Modality public
 
------------------------------------------------------------------------
-- Operations
 
relevance : Modality → Relevance
relevance (modality r _) = r
 
quantity : Modality → Quantity
quantity (modality _ q) = q
 
------------------------------------------------------------------------
-- Decidable equality
 
modality-injective₁ : modality r q ≡ modality r′ q′ → r ≡ r′
modality-injective₁ refl = refl
 
modality-injective₂ : modality r q ≡ modality r′ q′ → q ≡ q′
modality-injective₂ refl = refl
 
modality-injective : modality r q ≡ modality r′ q′ → r ≡ r′ × q ≡ q′
modality-injective = < modality-injective₁ , modality-injective₂ >
 
infix 4 _≟_
 
_≟_ : DecidableEquality Modality
modality r q ≟ modality r′ q′ =
map′
(uncurry (cong₂ modality))
modality-injective
(r Relevance.≟ r′ ×-dec q Quantity.≟ q′)