12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758-------------------------------------------------------------------------- The Agda standard library---- Membership of vectors, along with some additional definitions.------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Bundles using (Setoid)open import Relation.Binary.Definitions using (_Respects_) module Data.Vec.Membership.Setoid {c ℓ} (S : Setoid c ℓ) where open import Function.Base using (_∘_; flip)open import Data.Vec.Base as Vec using (Vec; []; _∷_)open import Data.Vec.Relation.Unary.Any as Any using (Any; here; there; index)open import Data.Product.Base using (∃; _×_; _,_)open import Relation.Nullary.Negation using (¬_)open import Relation.Unary using (Pred) open Setoid S renaming (Carrier to A) -------------------------------------------------------------------------- Definitions infix 4 _∈_ _∉_ _∈_ : A → ∀ {n} → Vec A n → Set _x ∈ xs = Any (x ≈_) xs _∉_ : A → ∀ {n} → Vec A n → Set _x ∉ xs = ¬ x ∈ xs -------------------------------------------------------------------------- Operations mapWith∈ : ∀ {b} {B : Set b} {n} (xs : Vec A n) → (∀ {x} → x ∈ xs → B) → Vec B nmapWith∈ [] f = []mapWith∈ (x ∷ xs) f = f (here refl) ∷ mapWith∈ xs (f ∘ there) infixr 5 _∷=_ _∷=_ : ∀ {n} {xs : Vec A n} {x} → x ∈ xs → A → Vec A n_∷=_ {xs = xs} x∈xs v = xs Vec.[ index x∈xs ]≔ v -------------------------------------------------------------------------- Finding and losing witnesses module _ {p} {P : Pred A p} where find : ∀ {n} {xs : Vec A n} → Any P xs → ∃ λ x → x ∈ xs × P x find (here px) = _ , here refl , px find (there pxs) = let x , x∈xs , px = find pxs in x , there x∈xs , px lose : P Respects _≈_ → ∀ {x n} {xs : Vec A n} → x ∈ xs → P x → Any P xs lose resp x∈xs px = Any.map (flip resp px) x∈xs