← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
------------------------------------------------------------------------
-- The Agda standard library
--
-- Membership of vectors, along with some additional definitions.
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Definitions using (_Respects_)
 
module Data.Vec.Membership.Setoid {c ℓ} (S : Setoid c ℓ) where
 
open import Function.Base using (_∘_; flip)
open import Data.Vec.Base as Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Unary.Any as Any
using (Any; here; there; index)
open import Data.Product.Base using (∃; _×_; _,_)
open import Relation.Nullary.Negation using (¬_)
open import Relation.Unary using (Pred)
 
open Setoid S renaming (Carrier to A)
 
------------------------------------------------------------------------
-- Definitions
 
infix 4 _∈_ _∉_
 
_∈_ : A → ∀ {n} → Vec A n → Set _
x ∈ xs = Any (x ≈_) xs
 
_∉_ : A → ∀ {n} → Vec A n → Set _
x ∉ xs = ¬ x ∈ xs
 
------------------------------------------------------------------------
-- Operations
 
mapWith∈ : ∀ {b} {B : Set b} {n}
(xs : Vec A n) → (∀ {x} → x ∈ xs → B) → Vec B n
mapWith∈ [] f = []
mapWith∈ (x ∷ xs) f = f (here refl) ∷ mapWith∈ xs (f ∘ there)
 
infixr 5 _∷=_
 
_∷=_ : ∀ {n} {xs : Vec A n} {x} → x ∈ xs → A → Vec A n
_∷=_ {xs = xs} x∈xs v = xs Vec.[ index x∈xs ]≔ v
 
------------------------------------------------------------------------
-- Finding and losing witnesses
 
module _ {p} {P : Pred A p} where
 
find : ∀ {n} {xs : Vec A n} → Any P xs → ∃ λ x → x ∈ xs × P x
find (here px) = _ , here refl , px
find (there pxs) = let x , x∈xs , px = find pxs in x , there x∈xs , px
 
lose : P Respects _≈_ → ∀ {x n} {xs : Vec A n} → x ∈ xs → P x → Any P xs
lose resp x∈xs px = Any.map (flip resp px) x∈xs