12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788-------------------------------------------------------------------------- The Agda standard library---- Vectors where at least one element satisfies a given property------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Vec.Relation.Unary.Any {a} {A : Set a} where open import Data.Fin.Base using (Fin; zero; suc)open import Data.Nat.Base using (ℕ; zero; suc; NonZero)open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_]′)open import Data.Vec.Base as Vec using (Vec; []; [_]; _∷_)open import Data.Product.Base as Product using (∃; _,_)open import Level using (Level; _⊔_)open import Relation.Nullary.Negation using (¬_; contradiction)open import Relation.Nullary.Decidable as Dec using (no; _⊎-dec_)open import Relation.Unary private variable p q : Level P : Pred A p Q : Pred A q n : ℕ xs : Vec A n -------------------------------------------------------------------------- Any P xs means that at least one element in xs satisfies P. data Any (P : Pred A p) : ∀ {n} → Vec A n → Set (a ⊔ p) where here : ∀ {n x} {xs : Vec A n} (px : P x) → Any P (x ∷ xs) there : ∀ {n x} {xs : Vec A n} (pxs : Any P xs) → Any P (x ∷ xs) -------------------------------------------------------------------------- Operations on Any -- If the tail does not satisfy the predicate, then the head will.head : ∀ {x} → ¬ Any P xs → Any P (x ∷ xs) → P xhead ¬pxs (here px) = pxhead ¬pxs (there pxs) = contradiction pxs ¬pxs -- If the head does not satisfy the predicate, then the tail will.tail : ∀ {x} → ¬ P x → Any P (x ∷ xs) → Any P xstail ¬px (here px) = contradiction px ¬pxtail ¬px (there pxs) = pxs -- Convert back and forth with sumtoSum : ∀ {x} → Any P (x ∷ xs) → P x ⊎ Any P xstoSum (here px) = inj₁ pxtoSum (there pxs) = inj₂ pxs fromSum : ∀ {x} → P x ⊎ Any P xs → Any P (x ∷ xs)fromSum = [ here , there ]′ map : P ⊆ Q → ∀ {n} → Any P {n} ⊆ Any Q {n}map g (here px) = here (g px)map g (there pxs) = there (map g pxs) index : Any P {n} xs → Fin nindex (here px) = zeroindex (there pxs) = suc (index pxs) lookup : Any P xs → Alookup {xs = xs} p = Vec.lookup xs (index p) -- If any element satisfies P, then P is satisfied.satisfied : Any P xs → ∃ Psatisfied (here px) = _ , pxsatisfied (there pxs) = satisfied pxs -------------------------------------------------------------------------- Properties of predicates preserved by Any any? : Decidable P → ∀ {n} → Decidable (Any P {n})any? P? [] = no λ()any? P? (x ∷ xs) = Dec.map′ fromSum toSum (P? x ⊎-dec any? P? xs) satisfiable : Satisfiable P → ∀ {n} → Satisfiable (Any P {suc n})satisfiable (x , p) {zero} = x ∷ [] , here psatisfiable (x , p) {suc n} = Product.map (x ∷_) there (satisfiable (x , p)) any = any?{-# WARNING_ON_USAGE any"Warning: any was deprecated in v1.4.Please use any? instead."#-}