← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
1234567891011121314151617181920212223242526272829303132333435363738
------------------------------------------------------------------------
-- The Agda standard library
--
-- The extensional sublist relation over setoid equality.
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Bundles using (Setoid)
 
module Data.List.Relation.Binary.Subset.Setoid
{c ℓ} (S : Setoid c ℓ) where
 
open import Data.List.Base using (List)
open import Data.List.Membership.Setoid S using (_∈_)
open import Function.Base using (flip)
open import Level using (_⊔_)
open import Relation.Nullary.Negation using (¬_)
 
open Setoid S renaming (Carrier to A)
 
------------------------------------------------------------------------
-- Definitions
 
infix 4 _⊆_ _⊇_ _⊈_ _⊉_
 
_⊆_ : Rel (List A) (c ⊔ ℓ)
xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys
 
_⊇_ : Rel (List A) (c ⊔ ℓ)
_⊇_ = flip _⊆_
 
_⊈_ : Rel (List A) (c ⊔ ℓ)
xs ⊈ ys = ¬ xs ⊆ ys
 
_⊉_ : Rel (List A) (c ⊔ ℓ)
xs ⊉ ys = ¬ xs ⊇ ys