1234567891011121314151617181920212223242526272829303132333435363738-------------------------------------------------------------------------- The Agda standard library---- The extensional sublist relation over setoid equality.------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Core using (Rel)open import Relation.Binary.Bundles using (Setoid) module Data.List.Relation.Binary.Subset.Setoid {c ℓ} (S : Setoid c ℓ) where open import Data.List.Base using (List)open import Data.List.Membership.Setoid S using (_∈_)open import Function.Base using (flip)open import Level using (_⊔_)open import Relation.Nullary.Negation using (¬_) open Setoid S renaming (Carrier to A) -------------------------------------------------------------------------- Definitions infix 4 _⊆_ _⊇_ _⊈_ _⊉_ _⊆_ : Rel (List A) (c ⊔ ℓ)xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys _⊇_ : Rel (List A) (c ⊔ ℓ)_⊇_ = flip _⊆_ _⊈_ : Rel (List A) (c ⊔ ℓ)xs ⊈ ys = ¬ xs ⊆ ys _⊉_ : Rel (List A) (c ⊔ ℓ)xs ⊉ ys = ¬ xs ⊇ ys