123456789101112131415161718192021222324252627282930313233343536373839404142-------------------------------------------------------------------------- The Agda standard library---- Properties of pointwise equality for containers------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Container.Relation.Binary.Pointwise.Properties where open import Axiom.Extensionality.Propositional using (Extensionality)open import Data.Container.Core using (Container; ⟦_⟧)open import Data.Container.Relation.Binary.Pointwise using (Pointwise; _,_)open import Data.Product.Base using (_,_; Σ-syntax; -,_)open import Level using (_⊔_)open import Relation.Binary.Core using (Rel)open import Relation.Binary.Definitions using (Reflexive; Symmetric; Transitive)open import Relation.Binary.Core using (Rel)open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_; subst; cong) module _ {s p x r} {X : Set x} (C : Container s p) (R : Rel X r) where refl : Reflexive R → Reflexive (Pointwise C R) refl R-refl = ≡.refl , λ p → R-refl sym : Symmetric R → Symmetric (Pointwise C R) sym R-sym (≡.refl , f) = ≡.refl , λ p → R-sym (f p) trans : Transitive R → Transitive (Pointwise C R) trans R-trans (≡.refl , f) (≡.refl , g) = ≡.refl , λ p → R-trans (f p) (g p) private -- Note that, if propositional equality were extensional, then -- Eq _≡_ and _≡_ would coincide. Eq⇒≡ : ∀ {s p x} {C : Container s p} {X : Set x} {xs ys : ⟦ C ⟧ X} → Extensionality p x → Pointwise C _≡_ xs ys → xs ≡ ys Eq⇒≡ ext (≡.refl , f≈f′) = cong -,_ (ext f≈f′)