1234567891011121314151617181920212223242526272829303132333435-------------------------------------------------------------------------- The Agda standard library---- Pointwise equality for containers------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Container.Relation.Binary.Pointwise where open import Data.Product.Base using (_,_; Σ-syntax; -,_; proj₁; proj₂)open import Function.Base using (_∘_)open import Level using (_⊔_)open import Relation.Binary.Core using (REL; _⇒_)open import Relation.Binary.PropositionalEquality.Core using (_≡_; subst) open import Data.Container.Core using (Container; ⟦_⟧) -- Equality, parametrised on an underlying relation. module _ {s p} (C : Container s p) where record Pointwise {x y e} {X : Set x} {Y : Set y} (R : REL X Y e) (cx : ⟦ C ⟧ X) (cy : ⟦ C ⟧ Y) : Set (s ⊔ p ⊔ e) where constructor _,_ field shape : proj₁ cx ≡ proj₁ cy position : ∀ p → R (proj₂ cx p) (proj₂ cy (subst _ shape p)) infixr 4 _,_ module _ {s p} {C : Container s p} {x y} {X : Set x} {Y : Set y} {ℓ ℓ′} {R : REL X Y ℓ} {R′ : REL X Y ℓ′} where map : R ⇒ R′ → Pointwise C R ⇒ Pointwise C R′ map R⇒R′ (s , f) = s , R⇒R′ ∘ f