← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
1234567891011121314151617181920212223242526272829303132333435
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise equality for containers
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Data.Container.Relation.Binary.Pointwise where
 
open import Data.Product.Base using (_,_; Σ-syntax; -,_; proj₁; proj₂)
open import Function.Base using (_∘_)
open import Level using (_⊔_)
open import Relation.Binary.Core using (REL; _⇒_)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; subst)
 
open import Data.Container.Core using (Container; ⟦_⟧)
 
-- Equality, parametrised on an underlying relation.
 
module _ {s p} (C : Container s p) where
 
record Pointwise {x y e} {X : Set x} {Y : Set y} (R : REL X Y e)
(cx : ⟦ C ⟧ X) (cy : ⟦ C ⟧ Y) : Set (s ⊔ p ⊔ e) where
constructor _,_
field shape : proj₁ cx ≡ proj₁ cy
position : ∀ p → R (proj₂ cx p) (proj₂ cy (subst _ shape p))
infixr 4 _,_
 
module _ {s p} {C : Container s p} {x y} {X : Set x} {Y : Set y}
{ℓ ℓ′} {R : REL X Y ℓ} {R′ : REL X Y ℓ′}
where
 
map : R ⇒ R′ → Pointwise C R ⇒ Pointwise C R′
map R⇒R′ (s , f) = s , R⇒R′ ∘ f