← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
{-# OPTIONS --without-K #-}
module Class.Bifunctor where
 
open import Class.Prelude hiding (A; B; C)
open import Class.Core
import Data.Product as ×
import Data.Sum as ⊎
 
private variable
a b : Level
A : Type a; A′ : Type a; A″ : Type a
B : A → Type b; B′ : A → Type b; C : A′ → Type b
 
-- ** indexed/dependent version
record BifunctorI
(F : (A : Type a) (B : A → Type b) → Type (a ⊔ b)) : Type (lsuc (a ⊔ b)) where
field
bimap′ : (f : A → A′) → (∀ {x} → B x → C (f x)) → F A B → F A′ C
 
map₁′ : (A → A′) → F A (const A″) → F A′ (const A″)
map₁′ f = bimap′ f id
_<$>₁′_ = map₁′
 
map₂′ : (∀ {x} → B x → B′ x) → F A B → F A B′
map₂′ g = bimap′ id g
_<$>₂′_ = map₂′
 
infixl 4 _<$>₁′_ _<$>₂′_
 
open BifunctorI ⦃...⦄ public
 
instance
Bifunctor-Σ : BifunctorI {a}{b} Σ
Bifunctor-Σ .bimap′ = ×.map
 
-- ** non-dependent version
record Bifunctor (F : Type a → Type b → Type (a ⊔ b)) : Type (lsuc (a ⊔ b)) where
field
bimap : ∀ {A A′ : Type a} {B B′ : Type b} → (A → A′) → (B → B′) → F A B → F A′ B′
 
map₁ : ∀ {A A′ : Type a} {B : Type b} → (A → A′) → F A B → F A′ B
map₁ f = bimap f id
_<$>₁_ = map₁
 
map₂ : ∀ {A : Type a} {B B′ : Type b} → (B → B′) → F A B → F A B′
map₂ g = bimap id g
_<$>₂_ = map₂
 
infixl 4 _<$>₁_ _<$>₂_
 
open Bifunctor ⦃...⦄ public
 
map₁₂ : ∀ {F : Type a → Type a → Type a} {A B : Type a}
→ ⦃ Bifunctor F ⦄
→ (A → B) → F A A → F B B
map₁₂ f = bimap f f
_<$>₁₂_ = map₁₂
infixl 4 _<$>₁₂_
 
instance
Bifunctor-× : Bifunctor {a}{b} _×_
Bifunctor-× .bimap f g = ×.map f g
 
Bifunctor-⊎ : Bifunctor {a}{b} _⊎_
Bifunctor-⊎ .bimap = ⊎.map