← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
{-# OPTIONS --without-K #-}
module Class.Prelude where
 
open import Agda.Primitive public
using () renaming (Set to Type; Setω to Typeω)
open import Level public
using (Level; _⊔_) renaming (suc to lsuc)
open import Function public
using (id; _∘_; _∋_; _$_; const; constᵣ; flip; it)
 
open import Data.Empty public
using (⊥; ⊥-elim)
open import Data.Unit public
using (⊤; tt)
open import Data.Product public
using (_×_; _,_; proj₁; proj₂; Σ; ∃; ∃-syntax; -,_)
open import Data.Sum public
using (_⊎_; inj₁; inj₂)
open import Data.Bool public
using (Bool; true; false; not; if_then_else_; T)
open import Data.Nat public
using (ℕ; zero; suc)
open import Data.Fin as Fin public
using (Fin; zero; suc)
open import Data.Integer public
using (ℤ; 0ℤ; 1ℤ)
open import Data.Rational public
using (ℚ)
open import Data.Float public
using (Float)
open import Data.Char public
using (Char)
open import Data.String public
using (String)
open import Data.Maybe public
using (Maybe; just; nothing; maybe; fromMaybe)
open import Data.List public
using (List; []; _∷_; [_]; map; _++_; foldr; concat; concatMap)
open import Data.List.NonEmpty public
using (List⁺; _∷_; _⁺++⁺_; foldr₁)
open import Data.Vec public
using (Vec; []; _∷_)
open import Data.These public
using (These; this; that; these)
 
open import Relation.Nullary public
using (¬_; Dec; yes; no)
open import Relation.Nullary.Decidable public
using (⌊_⌋; dec-yes; isYes)
open import Relation.Unary public
using (Pred)
renaming (Decidable to Decidable¹)
open import Relation.Binary public
using (REL; Rel; DecidableEquality)
renaming (Decidable to Decidable²)
module _ {a b c} where
3REL : (A : Set a) (B : Set b) (C : Set c) (ℓ : Level) → Type _
3REL A B C ℓ = A → B → C → Type ℓ
 
Decidable³ : ∀ {A B C ℓ} → 3REL A B C ℓ → Type _
Decidable³ _~_~_ = ∀ x y z → Dec (x ~ y ~ z)
open import Relation.Binary.PropositionalEquality public
using (_≡_; refl; sym; cong; subst)
 
open import Reflection public
using (TC; Arg; Abs)
 
variable
ℓ ℓ′ ℓ″ : Level
A B C : Type ℓ
 
module Alg (_~_ : Rel A ℓ) where
open import Algebra.Definitions _~_ public
module Alg≡ {ℓ} {A : Type ℓ} = Alg (_≡_ {A = A})