← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
------------------------------------------------------------------------
-- The Agda standard library
--
-- Consequences of a monomorphism between monoid-like structures
------------------------------------------------------------------------
 
-- See Data.Nat.Binary.Properties for examples of how this and similar
-- modules can be used to easily translate properties between types.
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Algebra.Bundles
open import Algebra.Morphism.Structures
open import Relation.Binary.Core
 
module Algebra.Morphism.MonoidMonomorphism
{a b ℓ₁ ℓ₂} {M₁ : RawMonoid a ℓ₁} {M₂ : RawMonoid b ℓ₂} {⟦_⟧}
(isMonoidMonomorphism : IsMonoidMonomorphism M₁ M₂ ⟦_⟧)
where
 
open IsMonoidMonomorphism isMonoidMonomorphism
open RawMonoid M₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_; ε to ε₁)
open RawMonoid M₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_; ε to ε₂)
 
open import Algebra.Definitions
open import Algebra.Structures
open import Data.Product.Base using (map)
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
 
------------------------------------------------------------------------
-- Re-export all properties of magma monomorphisms
 
open import Algebra.Morphism.MagmaMonomorphism
isMagmaMonomorphism public
 
------------------------------------------------------------------------
-- Properties
 
module _ (◦-isMagma : IsMagma _≈₂_ _◦_) where
 
open IsMagma ◦-isMagma renaming (∙-cong to ◦-cong)
open ≈-Reasoning setoid
 
identityˡ : LeftIdentity _≈₂_ ε₂ _◦_ → LeftIdentity _≈₁_ ε₁ _∙_
identityˡ idˡ x = injective (begin
⟦ ε₁ ∙ x ⟧ ≈⟨ homo ε₁ x ⟩
⟦ ε₁ ⟧ ◦ ⟦ x ⟧ ≈⟨ ◦-cong ε-homo refl ⟩
ε₂ ◦ ⟦ x ⟧ ≈⟨ idˡ ⟦ x ⟧ ⟩
⟦ x ⟧ ∎)
 
identityʳ : RightIdentity _≈₂_ ε₂ _◦_ → RightIdentity _≈₁_ ε₁ _∙_
identityʳ idʳ x = injective (begin
⟦ x ∙ ε₁ ⟧ ≈⟨ homo x ε₁ ⟩
⟦ x ⟧ ◦ ⟦ ε₁ ⟧ ≈⟨ ◦-cong refl ε-homo ⟩
⟦ x ⟧ ◦ ε₂ ≈⟨ idʳ ⟦ x ⟧ ⟩
⟦ x ⟧ ∎)
 
identity : Identity _≈₂_ ε₂ _◦_ → Identity _≈₁_ ε₁ _∙_
identity = map identityˡ identityʳ
 
zeroˡ : LeftZero _≈₂_ ε₂ _◦_ → LeftZero _≈₁_ ε₁ _∙_
zeroˡ zeˡ x = injective (begin
⟦ ε₁ ∙ x ⟧ ≈⟨ homo ε₁ x ⟩
⟦ ε₁ ⟧ ◦ ⟦ x ⟧ ≈⟨ ◦-cong ε-homo refl ⟩
ε₂ ◦ ⟦ x ⟧ ≈⟨ zeˡ ⟦ x ⟧ ⟩
ε₂ ≈⟨ ε-homo ⟨
⟦ ε₁ ⟧ ∎)
 
zeroʳ : RightZero _≈₂_ ε₂ _◦_ → RightZero _≈₁_ ε₁ _∙_
zeroʳ zeʳ x = injective (begin
⟦ x ∙ ε₁ ⟧ ≈⟨ homo x ε₁ ⟩
⟦ x ⟧ ◦ ⟦ ε₁ ⟧ ≈⟨ ◦-cong refl ε-homo ⟩
⟦ x ⟧ ◦ ε₂ ≈⟨ zeʳ ⟦ x ⟧ ⟩
ε₂ ≈⟨ ε-homo ⟨
⟦ ε₁ ⟧ ∎)
 
zero : Zero _≈₂_ ε₂ _◦_ → Zero _≈₁_ ε₁ _∙_
zero = map zeroˡ zeroʳ
 
------------------------------------------------------------------------
-- Structures
 
isMonoid : IsMonoid _≈₂_ _◦_ ε₂ → IsMonoid _≈₁_ _∙_ ε₁
isMonoid isMonoid = record
{ isSemigroup = isSemigroup M.isSemigroup
; identity = identity M.isMagma M.identity
} where module M = IsMonoid isMonoid
 
isCommutativeMonoid : IsCommutativeMonoid _≈₂_ _◦_ ε₂ →
IsCommutativeMonoid _≈₁_ _∙_ ε₁
isCommutativeMonoid isCommMonoid = record
{ isMonoid = isMonoid C.isMonoid
; comm = comm C.isMagma C.comm
} where module C = IsCommutativeMonoid isCommMonoid