← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637383940414243
------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for reasoning with a setoid
------------------------------------------------------------------------
 
-- Example use:
 
-- n*0≡0 : ∀ n → n * 0 ≡ 0
-- n*0≡0 zero = refl
-- n*0≡0 (suc n) = begin
-- suc n * 0 ≈⟨ refl ⟩
-- n * 0 + 0 ≈⟨ ... ⟩
-- n * 0 ≈⟨ n*0≡0 n ⟩
-- 0 ∎
 
-- Module `≡-Reasoning` in `Relation.Binary.PropositionalEquality`
-- is recommended for equational reasoning when the underlying equality
-- is `_≡_`.
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Reasoning.Syntax using (module ≈-syntax)
 
module Relation.Binary.Reasoning.Setoid {s₁ s₂} (S : Setoid s₁ s₂) where
 
open Setoid S
 
import Relation.Binary.Reasoning.Base.Single _≈_ refl trans
as SingleRelReasoning
 
------------------------------------------------------------------------
-- Reasoning combinators
 
-- Export the combinators for single relation reasoning, hiding the
-- single misnamed combinator.
open SingleRelReasoning public
hiding (step-∼)
renaming (∼-go to ≈-go)
 
-- Re-export the equality-based combinators instead
open ≈-syntax _IsRelatedTo_ _IsRelatedTo_ ≈-go sym public