123456789101112131415161718192021222324252627282930313233343536373839-------------------------------------------------------------------------- The Agda standard library---- Some derivable properties------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Lattice.Bundlesimport Algebra.Lattice.Properties.Lattice as LatticeProperties module Algebra.Lattice.Properties.DistributiveLattice {dl₁ dl₂} (DL : DistributiveLattice dl₁ dl₂) where open DistributiveLattice DLopen import Algebra.Definitions _≈_open import Algebra.Lattice.Structures _≈_open import Relation.Binary.Reasoning.Setoid setoid -------------------------------------------------------------------------- Export properties of lattices open LatticeProperties lattice public -------------------------------------------------------------------------- The dual construction is also a distributive lattice. ∧-∨-isDistributiveLattice : IsDistributiveLattice _∧_ _∨_∧-∨-isDistributiveLattice = record { isLattice = ∧-∨-isLattice ; ∨-distrib-∧ = ∧-distrib-∨ ; ∧-distrib-∨ = ∨-distrib-∧ } ∧-∨-distributiveLattice : DistributiveLattice _ _∧-∨-distributiveLattice = record { isDistributiveLattice = ∧-∨-isDistributiveLattice }