← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
123456789101112131415161718192021222324252627282930313233343536373839
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Algebra.Lattice.Bundles
import Algebra.Lattice.Properties.Lattice as LatticeProperties
 
module Algebra.Lattice.Properties.DistributiveLattice
{dl₁ dl₂} (DL : DistributiveLattice dl₁ dl₂)
where
 
open DistributiveLattice DL
open import Algebra.Definitions _≈_
open import Algebra.Lattice.Structures _≈_
open import Relation.Binary.Reasoning.Setoid setoid
 
------------------------------------------------------------------------
-- Export properties of lattices
 
open LatticeProperties lattice public
 
------------------------------------------------------------------------
-- The dual construction is also a distributive lattice.
 
∧-∨-isDistributiveLattice : IsDistributiveLattice _∧_ _∨_
∧-∨-isDistributiveLattice = record
{ isLattice = ∧-∨-isLattice
; ∨-distrib-∧ = ∧-distrib-∨
; ∧-distrib-∨ = ∨-distrib-∧
}
 
∧-∨-distributiveLattice : DistributiveLattice _ _
∧-∨-distributiveLattice = record
{ isDistributiveLattice = ∧-∨-isDistributiveLattice
}