1234567891011121314151617181920212223242526272829303132333435363738-------------------------------------------------------------------------- The Agda standard library---- Properties of a min operator derived from a spec over a total-- preorder.------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Construct.NaturalChoice.Base using (MinOperator)open import Relation.Binary.Bundles using (TotalPreorder) module Algebra.Lattice.Construct.NaturalChoice.MinOp {a ℓ₁ ℓ₂} {O : TotalPreorder a ℓ₁ ℓ₂} (minOp : MinOperator O) where open TotalPreorder Oopen MinOperator minOp open import Algebra.Construct.NaturalChoice.MinOp minOpopen import Algebra.Lattice.Bundles using (Semilattice)open import Algebra.Lattice.Structures _≈_ -------------------------------------------------------------------------- Structures ⊓-isSemilattice : IsSemilattice _⊓_⊓-isSemilattice = record { isBand = ⊓-isBand ; comm = ⊓-comm } -------------------------------------------------------------------------- Bundles ⊓-semilattice : Semilattice _ _⊓-semilattice = record { isSemilattice = ⊓-isSemilattice }