123456789101112131415161718192021222324252627282930313233343536373839-------------------------------------------------------------------------- The Agda standard library---- Properties of a min operator derived from a spec over a total-- preorder.------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Bundlesopen import Algebra.Lattice.Bundlesopen import Algebra.Construct.NaturalChoice.Baseopen import Relation.Binary.Bundles using (TotalPreorder) module Algebra.Lattice.Construct.NaturalChoice.MinOp {a ℓ₁ ℓ₂} {O : TotalPreorder a ℓ₁ ℓ₂} (minOp : MinOperator O) where open TotalPreorder Oopen MinOperator minOp open import Algebra.Lattice.Structures _≈_open import Algebra.Construct.NaturalChoice.MinOp minOp -------------------------------------------------------------------------- Structures ⊓-isSemilattice : IsSemilattice _⊓_⊓-isSemilattice = record { isBand = ⊓-isBand ; comm = ⊓-comm } -------------------------------------------------------------------------- Bundles ⊓-semilattice : Semilattice _ _⊓-semilattice = record { isSemilattice = ⊓-isSemilattice }