← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
------------------------------------------------------------------------
-- The Agda standard library
--
-- Basic definition of an operator that computes the min/max value
-- with respect to a total preorder.
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Algebra.Core
open import Level as L hiding (_⊔_)
open import Function.Base using (flip)
open import Relation.Binary.Bundles using (TotalPreorder)
open import Relation.Binary.Construct.Flip.EqAndOrd using ()
renaming (totalPreorder to flipOrder)
import Relation.Binary.Properties.TotalOrder as TotalOrderProperties
 
module Algebra.Construct.NaturalChoice.Base where
 
private
variable
a ℓ₁ ℓ₂ : Level
O : TotalPreorder a ℓ₁ ℓ₂
 
------------------------------------------------------------------------
-- Definition
 
module _ (O : TotalPreorder a ℓ₁ ℓ₂) where
open TotalPreorder O renaming (_≲_ to _≤_)
private _≥_ = flip _≤_
 
record MinOperator : Set (a L.⊔ ℓ₁ L.⊔ ℓ₂) where
infixl 7 _⊓_
field
_⊓_ : Op₂ Carrier
x≤y⇒x⊓y≈x : ∀ {x y} → x ≤ y → x ⊓ y ≈ x
x≥y⇒x⊓y≈y : ∀ {x y} → x ≥ y → x ⊓ y ≈ y
 
record MaxOperator : Set (a L.⊔ ℓ₁ L.⊔ ℓ₂) where
infixl 6 _⊔_
field
_⊔_ : Op₂ Carrier
x≤y⇒x⊔y≈y : ∀ {x y} → x ≤ y → x ⊔ y ≈ y
x≥y⇒x⊔y≈x : ∀ {x y} → x ≥ y → x ⊔ y ≈ x
 
------------------------------------------------------------------------
-- Properties
 
MinOp⇒MaxOp : MinOperator O → MaxOperator (flipOrder O)
MinOp⇒MaxOp minOp = record
{ _⊔_ = _⊓_
; x≤y⇒x⊔y≈y = x≥y⇒x⊓y≈y
; x≥y⇒x⊔y≈x = x≤y⇒x⊓y≈x
} where open MinOperator minOp
 
MaxOp⇒MinOp : MaxOperator O → MinOperator (flipOrder O)
MaxOp⇒MinOp maxOp = record
{ _⊓_ = _⊔_
; x≤y⇒x⊓y≈x = x≥y⇒x⊔y≈x
; x≥y⇒x⊓y≈y = x≤y⇒x⊔y≈y
} where open MaxOperator maxOp