12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152-------------------------------------------------------------------------- The Agda standard library---- Algebraic structures with an apartness relation------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Core using (Op₁; Op₂)open import Relation.Binary.Core using (Rel) module Algebra.Apartness.Structures {c ℓ₁ ℓ₂} {Carrier : Set c} (_≈_ : Rel Carrier ℓ₁) (_#_ : Rel Carrier ℓ₂) (_+_ _*_ : Op₂ Carrier) (-_ : Op₁ Carrier) (0# 1# : Carrier) where open import Level using (_⊔_; suc)open import Data.Product.Base using (∃-syntax; _×_; _,_; proj₂)open import Algebra.Definitions _≈_ using (Invertible)open import Algebra.Structures _≈_ using (IsCommutativeRing)open import Relation.Binary.Structures using (IsEquivalence; IsApartnessRelation)open import Relation.Binary.Definitions using (Tight)open import Relation.Nullary.Negation using (¬_)import Relation.Binary.Properties.ApartnessRelation as AR record IsHeytingCommutativeRing : Set (c ⊔ ℓ₁ ⊔ ℓ₂) where field isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0# 1# isApartnessRelation : IsApartnessRelation _≈_ _#_ open IsCommutativeRing isCommutativeRing public open IsApartnessRelation isApartnessRelation public field #⇒invertible : ∀ {x y} → x # y → Invertible 1# _*_ (x - y) invertible⇒# : ∀ {x y} → Invertible 1# _*_ (x - y) → x # y ¬#-isEquivalence : IsEquivalence _¬#_ ¬#-isEquivalence = AR.¬#-isEquivalence refl isApartnessRelation record IsHeytingField : Set (c ⊔ ℓ₁ ⊔ ℓ₂) where field isHeytingCommutativeRing : IsHeytingCommutativeRing tight : Tight _≈_ _#_ open IsHeytingCommutativeRing isHeytingCommutativeRing public