1234567891011121314151617181920212223242526272829-------------------------------------------------------------------------- The Agda standard library---- Apartness properties------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Core using (Rel) module Relation.Binary.Properties.ApartnessRelation {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_#_ : Rel A ℓ₂} where open import Function.Base using (_∘₂_)open import Relation.Binary.Definitions using (Reflexive)open import Relation.Binary.Consequences using (sym⇒¬-sym; cotrans⇒¬-trans)open import Relation.Binary.Structures using (IsEquivalence; IsApartnessRelation)open import Relation.Nullary.Negation using (¬_) ¬#-isEquivalence : Reflexive _≈_ → IsApartnessRelation _≈_ _#_ → IsEquivalence (¬_ ∘₂ _#_)¬#-isEquivalence re apart = record { refl = irrefl re ; sym = λ {a} {b} → sym⇒¬-sym sym {a} {b} ; trans = cotrans⇒¬-trans cotrans } where open IsApartnessRelation apart