← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
1234567891011121314151617181920212223242526272829
------------------------------------------------------------------------
-- The Agda standard library
--
-- Apartness properties
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Relation.Binary.Core using (Rel)
 
module Relation.Binary.Properties.ApartnessRelation
{a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel A ℓ₁}
{_#_ : Rel A ℓ₂}
where
 
open import Function.Base using (_∘₂_)
open import Relation.Binary.Definitions using (Reflexive)
open import Relation.Binary.Consequences using (sym⇒¬-sym; cotrans⇒¬-trans)
open import Relation.Binary.Structures using (IsEquivalence; IsApartnessRelation)
open import Relation.Nullary.Negation using (¬_)
 
¬#-isEquivalence : Reflexive _≈_ → IsApartnessRelation _≈_ _#_ →
IsEquivalence (¬_ ∘₂ _#_)
¬#-isEquivalence re apart = record
{ refl = irrefl re
; sym = λ {a} {b} → sym⇒¬-sym sym {a} {b}
; trans = cotrans⇒¬-trans cotrans
} where open IsApartnessRelation apart