12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758-------------------------------------------------------------------------- The Agda standard library---- Recomputable types and their algebra as Harrop formulas------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Nullary.Recomputable where open import Data.Empty using (⊥)open import Data.Irrelevant using (Irrelevant; irrelevant; [_])open import Data.Product.Base using (_×_; _,_; proj₁; proj₂)open import Level using (Level)open import Relation.Nullary.Negation.Core using (¬_) private variable a b : Level A : Set a B : Set b -------------------------------------------------------------------------- Re-export open import Relation.Nullary.Recomputable.Core public -------------------------------------------------------------------------- Constructions -- Irrelevant types are Recomputable irrelevant-recompute : Recomputable (Irrelevant A)irrelevant (irrelevant-recompute [ a ]) = a -- Corollary: so too is ⊥ ⊥-recompute : Recomputable ⊥⊥-recompute = irrelevant-recompute _×-recompute_ : Recomputable A → Recomputable B → Recomputable (A × B)(rA ×-recompute rB) p = rA (p .proj₁) , rB (p .proj₂) _→-recompute_ : (A : Set a) → Recomputable B → Recomputable (A → B)(A →-recompute rB) f a = rB (f a) Π-recompute : (B : A → Set b) → (∀ x → Recomputable (B x)) → Recomputable (∀ x → B x)Π-recompute B rB f a = rB a (f a) ∀-recompute : (B : A → Set b) → (∀ {x} → Recomputable (B x)) → Recomputable (∀ {x} → B x)∀-recompute B rB f = rB f -- Corollary: negations are Recomputable ¬-recompute : Recomputable (¬ A)¬-recompute {A = A} = A →-recompute ⊥-recompute