1234567891011121314151617181920212223242526272829303132333435-------------------------------------------------------------------------- The Agda standard library---- Propositional (intensional) equality - Algebraic structures------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.PropositionalEquality.Algebra where open import Algebra.Bundles using (Magma)open import Algebra.Core using (Op₂)open import Algebra.Structures using (IsMagma)open import Level using (Level)open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong₂)open import Relation.Binary.PropositionalEquality.Properties using (isEquivalence) private variable a : Level A : Set a -------------------------------------------------------------------------- Any operation forms a magma over _≡_ isMagma : (_∙_ : Op₂ A) → IsMagma _≡_ _∙_isMagma _∙_ = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _∙_ } magma : (_∙_ : Op₂ A) → Magma _ _magma _∙_ = record { isMagma = isMagma _∙_ }