← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
1234567891011121314151617181920212223242526272829303132333435
------------------------------------------------------------------------
-- The Agda standard library
--
-- Propositional (intensional) equality - Algebraic structures
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Relation.Binary.PropositionalEquality.Algebra where
 
open import Algebra.Bundles using (Magma)
open import Algebra.Core using (Op₂)
open import Algebra.Structures using (IsMagma)
open import Level using (Level)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong₂)
open import Relation.Binary.PropositionalEquality.Properties using (isEquivalence)
 
private
variable
a : Level
A : Set a
 
------------------------------------------------------------------------
-- Any operation forms a magma over _≡_
 
isMagma : (_∙_ : Op₂ A) → IsMagma _≡_ _∙_
isMagma _∙_ = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _∙_
}
 
magma : (_∙_ : Op₂ A) → Magma _ _
magma _∙_ = record
{ isMagma = isMagma _∙_
}