← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
------------------------------------------------------------------------
-- The Agda standard library
--
-- Consequences of a monomorphism between binary relations
------------------------------------------------------------------------
 
-- See Data.Nat.Binary.Properties for examples of how this and similar
-- modules can be used to easily translate properties between types.
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Function.Base
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Structures using (IsEquivalence; IsDecEquivalence)
open import Relation.Binary.Definitions
using (Reflexive; Symmetric; Transitive; Total; Asymmetric; Decidable)
open import Relation.Binary.Morphism
 
module Relation.Binary.Morphism.RelMonomorphism
{a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
{_∼₁_ : Rel A ℓ₁} {_∼₂_ : Rel B ℓ₂}
{⟦_⟧ : A → B} (isMonomorphism : IsRelMonomorphism _∼₁_ _∼₂_ ⟦_⟧)
where
 
open import Data.Sum.Base as Sum
open import Relation.Nullary.Decidable using (yes; no)
open import Relation.Nullary.Decidable
 
open IsRelMonomorphism isMonomorphism
 
------------------------------------------------------------------------
-- Properties
 
refl : Reflexive _∼₂_ → Reflexive _∼₁_
refl refl = injective refl
 
sym : Symmetric _∼₂_ → Symmetric _∼₁_
sym sym x∼y = injective (sym (cong x∼y))
 
trans : Transitive _∼₂_ → Transitive _∼₁_
trans trans x∼y y∼z = injective (trans (cong x∼y) (cong y∼z))
 
total : Total _∼₂_ → Total _∼₁_
total total x y = Sum.map injective injective (total ⟦ x ⟧ ⟦ y ⟧)
 
asym : Asymmetric _∼₂_ → Asymmetric _∼₁_
asym asym x∼y y∼x = asym (cong x∼y) (cong y∼x)
 
dec : Decidable _∼₂_ → Decidable _∼₁_
dec _∼?_ x y = map′ injective cong (⟦ x ⟧ ∼? ⟦ y ⟧)
 
------------------------------------------------------------------------
-- Structures
 
isEquivalence : IsEquivalence _∼₂_ → IsEquivalence _∼₁_
isEquivalence isEq = record
{ refl = refl E.refl
; sym = sym E.sym
; trans = trans E.trans
} where module E = IsEquivalence isEq
 
isDecEquivalence : IsDecEquivalence _∼₂_ → IsDecEquivalence _∼₁_
isDecEquivalence isDecEq = record
{ isEquivalence = isEquivalence E.isEquivalence
; _≟_ = dec E._≟_
} where module E = IsDecEquivalence isDecEq