← Back

Modules

Leios

  • Linear

Network

  • BasicBroadcast
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
------------------------------------------------------------------------
-- The Agda standard library
--
-- Consequences of a monomorphism between binary relations
------------------------------------------------------------------------
 
-- See Data.Nat.Binary.Properties for examples of how this and similar
-- modules can be used to easily translate properties between types.
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Morphism using (IsRelMonomorphism)
 
module Relation.Binary.Morphism.RelMonomorphism
{a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
{_∼₁_ : Rel A ℓ₁} {_∼₂_ : Rel B ℓ₂}
{⟦_⟧ : A → B} (isMonomorphism : IsRelMonomorphism _∼₁_ _∼₂_ ⟦_⟧)
where
 
open import Data.Sum.Base as Sum using (map)
open import Function.Base using (flip; _∘_)
open import Relation.Binary.Definitions
using (Reflexive; Symmetric; Transitive; Total; Asymmetric; Decidable)
open import Relation.Binary.Structures using (IsEquivalence; IsDecEquivalence)
open import Relation.Nullary.Decidable.Core using (yes; no; map′)
 
open IsRelMonomorphism isMonomorphism
 
------------------------------------------------------------------------
-- Properties
 
refl : Reflexive _∼₂_ → Reflexive _∼₁_
refl refl = injective refl
 
sym : Symmetric _∼₂_ → Symmetric _∼₁_
sym sym x∼y = injective (sym (cong x∼y))
 
trans : Transitive _∼₂_ → Transitive _∼₁_
trans trans x∼y y∼z = injective (trans (cong x∼y) (cong y∼z))
 
total : Total _∼₂_ → Total _∼₁_
total total x y = Sum.map injective injective (total ⟦ x ⟧ ⟦ y ⟧)
 
asym : Asymmetric _∼₂_ → Asymmetric _∼₁_
asym asym x∼y y∼x = asym (cong x∼y) (cong y∼x)
 
dec : Decidable _∼₂_ → Decidable _∼₁_
dec _∼?_ x y = map′ injective cong (⟦ x ⟧ ∼? ⟦ y ⟧)
 
------------------------------------------------------------------------
-- Structures
 
isEquivalence : IsEquivalence _∼₂_ → IsEquivalence _∼₁_
isEquivalence isEq = record
{ refl = refl E.refl
; sym = sym E.sym
; trans = trans E.trans
} where module E = IsEquivalence isEq
 
isDecEquivalence : IsDecEquivalence _∼₂_ → IsDecEquivalence _∼₁_
isDecEquivalence isDecEq = record
{ isEquivalence = isEquivalence E.isEquivalence
; _≟_ = dec E._≟_
} where module E = IsDecEquivalence isDecEq