← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637
------------------------------------------------------------------------
-- The Agda standard library
--
-- Definitions for order-theoretic lattices
------------------------------------------------------------------------
 
-- The contents of this module should be accessed via
-- `Relation.Binary.Lattice`.
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Relation.Binary.Lattice.Definitions where
 
open import Algebra.Core
open import Data.Product.Base using (_×_; _,_)
open import Function.Base using (flip)
open import Relation.Binary.Core using (Rel)
open import Level using (Level)
 
private
variable
a ℓ : Level
A : Set a
 
------------------------------------------------------------------------
-- Relationships between orders and operators
 
Supremum : Rel A ℓ → Op₂ A → Set _
Supremum _≤_ _∨_ =
∀ x y → x ≤ (x ∨ y) × y ≤ (x ∨ y) × ∀ z → x ≤ z → y ≤ z → (x ∨ y) ≤ z
 
Infimum : Rel A ℓ → Op₂ A → Set _
Infimum _≤_ = Supremum (flip _≤_)
 
Exponential : Rel A ℓ → Op₂ A → Op₂ A → Set _
Exponential _≤_ _∧_ _⇨_ =
∀ w x y → ((w ∧ x) ≤ y → w ≤ (x ⇨ y)) × (w ≤ (x ⇨ y) → (w ∧ x) ≤ y)