12345678910111213141516171819202122232425262728293031323334353637-------------------------------------------------------------------------- The Agda standard library---- Definitions for order-theoretic lattices------------------------------------------------------------------------ -- The contents of this module should be accessed via-- `Relation.Binary.Lattice`. {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Lattice.Definitions where open import Algebra.Coreopen import Data.Product.Base using (_×_; _,_)open import Function.Base using (flip)open import Relation.Binary.Core using (Rel)open import Level using (Level) private variable a ℓ : Level A : Set a -------------------------------------------------------------------------- Relationships between orders and operators Supremum : Rel A ℓ → Op₂ A → Set _Supremum _≤_ _∨_ = ∀ x y → x ≤ (x ∨ y) × y ≤ (x ∨ y) × ∀ z → x ≤ z → y ≤ z → (x ∨ y) ≤ z Infimum : Rel A ℓ → Op₂ A → Set _Infimum _≤_ = Supremum (flip _≤_) Exponential : Rel A ℓ → Op₂ A → Op₂ A → Set _Exponential _≤_ _∧_ _⇨_ = ∀ w x y → ((w ∧ x) ≤ y → w ≤ (x ⇨ y)) × (w ≤ (x ⇨ y) → (w ∧ x) ≤ y)