← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bundles for order-theoretic lattices
------------------------------------------------------------------------
 
-- The contents of this module should be accessed via
-- `Relation.Binary.Lattice`.
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Relation.Binary.Lattice.Bundles where
 
open import Algebra.Core
open import Level using (suc; _⊔_)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Bundles using (Poset; Setoid)
open import Relation.Binary.Lattice.Structures
 
------------------------------------------------------------------------
-- Join semilattices
 
record JoinSemilattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
infixr 6 _∨_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_≤_ : Rel Carrier ℓ₂ -- The partial order.
_∨_ : Op₂ Carrier -- The join operation.
isJoinSemilattice : IsJoinSemilattice _≈_ _≤_ _∨_
 
open IsJoinSemilattice isJoinSemilattice public
 
poset : Poset c ℓ₁ ℓ₂
poset = record { isPartialOrder = isPartialOrder }
 
open Poset poset public using (preorder)
 
 
record BoundedJoinSemilattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
infixr 6 _∨_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_≤_ : Rel Carrier ℓ₂ -- The partial order.
_∨_ : Op₂ Carrier -- The join operation.
⊥ : Carrier -- The minimum.
isBoundedJoinSemilattice : IsBoundedJoinSemilattice _≈_ _≤_ _∨_ ⊥
 
open IsBoundedJoinSemilattice isBoundedJoinSemilattice public
 
joinSemilattice : JoinSemilattice c ℓ₁ ℓ₂
joinSemilattice = record { isJoinSemilattice = isJoinSemilattice }
 
open JoinSemilattice joinSemilattice public using (preorder; poset)
 
------------------------------------------------------------------------
-- Meet semilattices
 
record MeetSemilattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
infixr 7 _∧_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_≤_ : Rel Carrier ℓ₂ -- The partial order.
_∧_ : Op₂ Carrier -- The meet operation.
isMeetSemilattice : IsMeetSemilattice _≈_ _≤_ _∧_
 
open IsMeetSemilattice isMeetSemilattice public
 
poset : Poset c ℓ₁ ℓ₂
poset = record { isPartialOrder = isPartialOrder }
 
open Poset poset public using (preorder)
 
record BoundedMeetSemilattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
infixr 7 _∧_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_≤_ : Rel Carrier ℓ₂ -- The partial order.
_∧_ : Op₂ Carrier -- The join operation.
⊤ : Carrier -- The maximum.
isBoundedMeetSemilattice : IsBoundedMeetSemilattice _≈_ _≤_ _∧_ ⊤
 
open IsBoundedMeetSemilattice isBoundedMeetSemilattice public
 
meetSemilattice : MeetSemilattice c ℓ₁ ℓ₂
meetSemilattice = record { isMeetSemilattice = isMeetSemilattice }
 
open MeetSemilattice meetSemilattice public using (preorder; poset)
 
------------------------------------------------------------------------
-- Lattices
 
record Lattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
infixr 6 _∨_
infixr 7 _∧_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_≤_ : Rel Carrier ℓ₂ -- The partial order.
_∨_ : Op₂ Carrier -- The join operation.
_∧_ : Op₂ Carrier -- The meet operation.
isLattice : IsLattice _≈_ _≤_ _∨_ _∧_
 
open IsLattice isLattice public
 
setoid : Setoid c ℓ₁
setoid = record { isEquivalence = isEquivalence }
 
joinSemilattice : JoinSemilattice c ℓ₁ ℓ₂
joinSemilattice = record { isJoinSemilattice = isJoinSemilattice }
 
meetSemilattice : MeetSemilattice c ℓ₁ ℓ₂
meetSemilattice = record { isMeetSemilattice = isMeetSemilattice }
 
open JoinSemilattice joinSemilattice public using (poset; preorder)
 
record DistributiveLattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
infixr 6 _∨_
infixr 7 _∧_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_≤_ : Rel Carrier ℓ₂ -- The partial order.
_∨_ : Op₂ Carrier -- The join operation.
_∧_ : Op₂ Carrier -- The meet operation.
isDistributiveLattice : IsDistributiveLattice _≈_ _≤_ _∨_ _∧_
 
open IsDistributiveLattice isDistributiveLattice using (∧-distribˡ-∨) public
open IsDistributiveLattice isDistributiveLattice using (isLattice)
 
lattice : Lattice c ℓ₁ ℓ₂
lattice = record { isLattice = isLattice }
 
open Lattice lattice hiding (Carrier; _≈_; _≤_; _∨_; _∧_) public
 
record BoundedLattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
infixr 6 _∨_
infixr 7 _∧_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_≤_ : Rel Carrier ℓ₂ -- The partial order.
_∨_ : Op₂ Carrier -- The join operation.
_∧_ : Op₂ Carrier -- The meet operation.
⊤ : Carrier -- The maximum.
⊥ : Carrier -- The minimum.
isBoundedLattice : IsBoundedLattice _≈_ _≤_ _∨_ _∧_ ⊤ ⊥
 
open IsBoundedLattice isBoundedLattice public
 
boundedJoinSemilattice : BoundedJoinSemilattice c ℓ₁ ℓ₂
boundedJoinSemilattice = record
{ isBoundedJoinSemilattice = isBoundedJoinSemilattice }
 
boundedMeetSemilattice : BoundedMeetSemilattice c ℓ₁ ℓ₂
boundedMeetSemilattice = record
{ isBoundedMeetSemilattice = isBoundedMeetSemilattice }
 
lattice : Lattice c ℓ₁ ℓ₂
lattice = record { isLattice = isLattice }
 
open Lattice lattice public
using (joinSemilattice; meetSemilattice; poset; preorder; setoid)
 
------------------------------------------------------------------------
-- Heyting algebras (a bounded lattice with exponential operator)
 
record HeytingAlgebra c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
infixr 5 _⇨_
infixr 6 _∨_
infixr 7 _∧_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_≤_ : Rel Carrier ℓ₂ -- The partial order.
_∨_ : Op₂ Carrier -- The join operation.
_∧_ : Op₂ Carrier -- The meet operation.
_⇨_ : Op₂ Carrier -- The exponential operation.
⊤ : Carrier -- The maximum.
⊥ : Carrier -- The minimum.
isHeytingAlgebra : IsHeytingAlgebra _≈_ _≤_ _∨_ _∧_ _⇨_ ⊤ ⊥
 
boundedLattice : BoundedLattice c ℓ₁ ℓ₂
boundedLattice = record
{ isBoundedLattice = IsHeytingAlgebra.isBoundedLattice isHeytingAlgebra }
 
open IsHeytingAlgebra isHeytingAlgebra
using (exponential; transpose-⇨; transpose-∧) public
open BoundedLattice boundedLattice
hiding (Carrier; _≈_; _≤_; _∨_; _∧_; ⊤; ⊥) public
 
------------------------------------------------------------------------
-- Boolean algebras (a specialized Heyting algebra)
 
record BooleanAlgebra c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
infixr 6 _∨_
infixr 7 _∧_
infix 8 ¬_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_≤_ : Rel Carrier ℓ₂ -- The partial order.
_∨_ : Op₂ Carrier -- The join operation.
_∧_ : Op₂ Carrier -- The meet operation.
¬_ : Op₁ Carrier -- The negation operation.
⊤ : Carrier -- The maximum.
⊥ : Carrier -- The minimum.
isBooleanAlgebra : IsBooleanAlgebra _≈_ _≤_ _∨_ _∧_ ¬_ ⊤ ⊥
 
open IsBooleanAlgebra isBooleanAlgebra using (isHeytingAlgebra)
 
heytingAlgebra : HeytingAlgebra c ℓ₁ ℓ₂
heytingAlgebra = record { isHeytingAlgebra = isHeytingAlgebra }
 
open HeytingAlgebra heytingAlgebra public
hiding (Carrier; _≈_; _≤_; _∨_; _∧_; ⊤; ⊥)