123456789101112131415161718192021222324252627282930313233-------------------------------------------------------------------------- The Agda standard library---- Indexed binary relations------------------------------------------------------------------------ -- The contents of this module should be accessed via-- `Relation.Binary.Indexed.Heterogeneous`. {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Indexed.Heterogeneous.Definitions where open import Levelimport Relation.Binary.Definitions as Bopen import Relation.Binary.Indexed.Heterogeneous.Core private variable i a ℓ : Level I : Set i -------------------------------------------------------------------------- Simple properties of indexed binary relations Reflexive : (A : I → Set a) → IRel A ℓ → Set _Reflexive _ _∼_ = ∀ {i} → B.Reflexive (_∼_ {i}) Symmetric : (A : I → Set a) → IRel A ℓ → Set _Symmetric _ _∼_ = ∀ {i j} → B.Sym (_∼_ {i} {j}) _∼_ Transitive : (A : I → Set a) → IRel A ℓ → Set _Transitive _ _∼_ = ∀ {i j k} → B.Trans _∼_ (_∼_ {j}) (_∼_ {i} {k})