12345678910111213141516171819202122232425262728293031323334-------------------------------------------------------------------------- The Agda standard library---- Indexed binary relations------------------------------------------------------------------------ -- The contents of this module should be accessed via-- `Relation.Binary.Indexed.Heterogeneous`. {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Indexed.Heterogeneous.Definitions where open import Level using (Level)import Relation.Binary.Definitions as B using (Reflexive; Symmetric; Transitive; Sym; Trans)open import Relation.Binary.Indexed.Heterogeneous.Core using (IRel) private variable i a ℓ : Level I : Set i -------------------------------------------------------------------------- Simple properties of indexed binary relations Reflexive : (A : I → Set a) → IRel A ℓ → Set _Reflexive _ _∼_ = ∀ {i} → B.Reflexive (_∼_ {i}) Symmetric : (A : I → Set a) → IRel A ℓ → Set _Symmetric _ _∼_ = ∀ {i j} → B.Sym (_∼_ {i} {j}) _∼_ Transitive : (A : I → Set a) → IRel A ℓ → Set _Transitive _ _∼_ = ∀ {i j k} → B.Trans _∼_ (_∼_ {j}) (_∼_ {i} {k})