123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657-------------------------------------------------------------------------- The Agda standard library---- Indexed binary relations------------------------------------------------------------------------ -- The contents of this module should be accessed via-- `Relation.Binary.Indexed.Heterogeneous`. {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Indexed.Heterogeneous.Bundles where open import Level using (suc; _⊔_)open import Relation.Binary.Indexed.Heterogeneous.Coreopen import Relation.Binary.Indexed.Heterogeneous.Structures -------------------------------------------------------------------------- Definitions record IndexedSetoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where infix 4 _≈_ field Carrier : I → Set c _≈_ : IRel Carrier ℓ isEquivalence : IsIndexedEquivalence Carrier _≈_ open IsIndexedEquivalence isEquivalence public record IndexedPreorder {i} (I : Set i) c ℓ₁ ℓ₂ : Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≲_ field Carrier : I → Set c _≈_ : IRel Carrier ℓ₁ -- The underlying equality. _≲_ : IRel Carrier ℓ₂ -- The relation. isPreorder : IsIndexedPreorder Carrier _≈_ _≲_ open IsIndexedPreorder isPreorder public infix 4 _∼_ _∼_ = _≲_ -------------------------------------------------------------------------- DEPRECATED-------------------------------------------------------------------------- Please use the new names as continuing support for the old names is-- not guaranteed. -- Version 2.0 {-# WARNING_ON_USAGE IndexedPreorder._∼_"Warning: IndexedPreorder._∼_ was deprecated in v2.0. Please use IndexedPreorder._≲_ instead. "#-}