← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
1234567891011121314151617181920212223242526272829303132333435363738394041424344
------------------------------------------------------------------------
-- The Agda standard library
--
-- Substituting equalities for binary relations
------------------------------------------------------------------------
 
-- For more general transformations between binary relations
-- see `Relation.Binary.Morphisms`.
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Data.Product.Base using (_,_)
open import Relation.Binary.Core using (Rel; _⇔_)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.Definitions using (Reflexive; Symmetric; Transitive)
 
module Relation.Binary.Construct.Subst.Equality
{a ℓ₁ ℓ₂} {A : Set a} {≈₁ : Rel A ℓ₁} {≈₂ : Rel A ℓ₂}
(equiv@(to , from) : ≈₁ ⇔ ≈₂)
where
 
open import Function.Base
 
------------------------------------------------------------------------
-- Definitions
 
refl : Reflexive ≈₁ → Reflexive ≈₂
refl refl = to refl
 
sym : Symmetric ≈₁ → Symmetric ≈₂
sym sym = to ∘′ sym ∘′ from
 
trans : Transitive ≈₁ → Transitive ≈₂
trans trans x≈y y≈z = to (trans (from x≈y) (from y≈z))
 
------------------------------------------------------------------------
-- Structures
 
isEquivalence : IsEquivalence ≈₁ → IsEquivalence ≈₂
isEquivalence E = record
{ refl = refl E.refl
; sym = sym E.sym
; trans = trans E.trans
} where module E = IsEquivalence E