← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
------------------------------------------------------------------------
-- The Agda standard library
--
-- Literals used in the reflection machinery
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Reflection.AST.Literal where
 
open import Data.Bool.Base using (Bool; true; false)
import Data.Char.Properties as Char
import Data.Float.Properties as Float
import Data.Nat.Properties as ℕ
import Data.String.Properties as String
import Data.Word64.Properties as Word64
import Reflection.AST.Meta as Meta
import Reflection.AST.Name as Name
open import Relation.Nullary.Decidable.Core using (yes; no; map′; isYes)
open import Relation.Binary.Definitions using (DecidableEquality)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong)
 
------------------------------------------------------------------------
-- Re-exporting the builtin type and constructors
 
open import Agda.Builtin.Reflection public
using ( Literal )
open Literal public
 
------------------------------------------------------------------------
-- Decidable equality
 
meta-injective : ∀ {x y} → meta x ≡ meta y → x ≡ y
meta-injective refl = refl
 
nat-injective : ∀ {x y} → nat x ≡ nat y → x ≡ y
nat-injective refl = refl
 
word64-injective : ∀ {x y} → word64 x ≡ word64 y → x ≡ y
word64-injective refl = refl
 
float-injective : ∀ {x y} → float x ≡ float y → x ≡ y
float-injective refl = refl
 
char-injective : ∀ {x y} → char x ≡ char y → x ≡ y
char-injective refl = refl
 
string-injective : ∀ {x y} → string x ≡ string y → x ≡ y
string-injective refl = refl
 
name-injective : ∀ {x y} → name x ≡ name y → x ≡ y
name-injective refl = refl
 
infix 4 _≟_
_≟_ : DecidableEquality Literal
nat x ≟ nat x₁ = map′ (cong nat) nat-injective (x ℕ.≟ x₁)
nat x ≟ word64 x₁ = no (λ ())
nat x ≟ float x₁ = no (λ ())
nat x ≟ char x₁ = no (λ ())
nat x ≟ string x₁ = no (λ ())
nat x ≟ name x₁ = no (λ ())
nat x ≟ meta x₁ = no (λ ())
word64 x ≟ word64 x₁ = map′ (cong word64) word64-injective (x Word64.≟ x₁)
word64 x ≟ nat x₁ = no (λ ())
word64 x ≟ float x₁ = no (λ ())
word64 x ≟ char x₁ = no (λ ())
word64 x ≟ string x₁ = no (λ ())
word64 x ≟ name x₁ = no (λ ())
word64 x ≟ meta x₁ = no (λ ())
float x ≟ nat x₁ = no (λ ())
float x ≟ word64 x₁ = no (λ ())
float x ≟ float x₁ = map′ (cong float) float-injective (x Float.≟ x₁)
float x ≟ char x₁ = no (λ ())
float x ≟ string x₁ = no (λ ())
float x ≟ name x₁ = no (λ ())
float x ≟ meta x₁ = no (λ ())
char x ≟ nat x₁ = no (λ ())
char x ≟ word64 x₁ = no (λ ())
char x ≟ float x₁ = no (λ ())
char x ≟ char x₁ = map′ (cong char) char-injective (x Char.≟ x₁)
char x ≟ string x₁ = no (λ ())
char x ≟ name x₁ = no (λ ())
char x ≟ meta x₁ = no (λ ())
string x ≟ nat x₁ = no (λ ())
string x ≟ word64 x₁ = no (λ ())
string x ≟ float x₁ = no (λ ())
string x ≟ char x₁ = no (λ ())
string x ≟ string x₁ = map′ (cong string) string-injective (x String.≟ x₁)
string x ≟ name x₁ = no (λ ())
string x ≟ meta x₁ = no (λ ())
name x ≟ nat x₁ = no (λ ())
name x ≟ word64 x₁ = no (λ ())
name x ≟ float x₁ = no (λ ())
name x ≟ char x₁ = no (λ ())
name x ≟ string x₁ = no (λ ())
name x ≟ name x₁ = map′ (cong name) name-injective (x Name.≟ x₁)
name x ≟ meta x₁ = no (λ ())
meta x ≟ nat x₁ = no (λ ())
meta x ≟ word64 x₁ = no (λ ())
meta x ≟ float x₁ = no (λ ())
meta x ≟ char x₁ = no (λ ())
meta x ≟ string x₁ = no (λ ())
meta x ≟ name x₁ = no (λ ())
meta x ≟ meta x₁ = map′ (cong meta) meta-injective (x Meta.≟ x₁)
 
infix 4 _≡ᵇ_
 
_≡ᵇ_ : Literal → Literal → Bool
l ≡ᵇ l′ = isYes (l ≟ l′)