1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465-------------------------------------------------------------------------- The Agda standard library---- Abstractions used in the reflection machinery------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Reflection.AST.Abstraction where open import Data.String.Base as String using (String)open import Data.String.Properties as String using (_≟_)open import Data.Product.Base using (_×_; <_,_>; uncurry)open import Level using (Level)open import Relation.Nullary.Decidable.Core using (Dec; map′; _×-dec_)open import Relation.Binary.Definitions using (DecidableEquality)open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong₂) private variable a b : Level A B : Set a s t : String x y : A -------------------------------------------------------------------------- Re-exporting the builtins publicly open import Agda.Builtin.Reflection public using (Abs) open Abs public -------------------------------------------------------------------------- Operations map : (A → B) → Abs A → Abs Bmap f (abs s x) = abs s (f x) -------------------------------------------------------------------------- Decidable equality abs-injective₁ : abs s x ≡ abs t y → s ≡ tabs-injective₁ refl = refl abs-injective₂ : abs s x ≡ abs t y → x ≡ yabs-injective₂ refl = refl abs-injective : abs s x ≡ abs t y → s ≡ t × x ≡ yabs-injective = < abs-injective₁ , abs-injective₂ > -- We often need decidability of equality for Abs A when implementing it-- for A. Unfortunately ≡-dec makes the termination checker unhappy.-- Instead, we can match on both Abs A and use unAbs-dec for an-- obviously decreasing recursive call. unAbs : Abs A → AunAbs (abs s a) = a unAbs-dec : {abs1 abs2 : Abs A} → Dec (unAbs abs1 ≡ unAbs abs2) → Dec (abs1 ≡ abs2)unAbs-dec {abs1 = abs s a} {abs t a′} a≟a′ = map′ (uncurry (cong₂ abs)) abs-injective (s String.≟ t ×-dec a≟a′) ≡-dec : DecidableEquality A → DecidableEquality (Abs A)≡-dec _≟_ x y = unAbs-dec (unAbs x ≟ unAbs y)