← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some metric structures (not packed up with sets, operations, etc.)
------------------------------------------------------------------------
 
-- The contents of this module should usually be accessed via
-- `Function.Metric`.
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Structures using (IsPartialOrder; IsEquivalence)
 
module Function.Metric.Structures
{a i ℓ₁ ℓ₂ ℓ₃} {A : Set a} {I : Set i}
(_≈ₐ_ : Rel A ℓ₁) (_≈ᵢ_ : Rel I ℓ₂) (_≤_ : Rel I ℓ₃) (0# : I) where
 
open import Algebra.Core using (Op₂)
open import Function.Metric.Core
open import Function.Metric.Definitions
open import Level using (_⊔_)
 
------------------------------------------------------------------------
-- Proto-metrics
 
-- We do not insist that the ordering relation is total as otherwise
-- we would exclude the real numbers.
 
record IsProtoMetric (d : DistanceFunction A I)
: Set (a ⊔ i ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
field
isPartialOrder : IsPartialOrder _≈ᵢ_ _≤_
≈-isEquivalence : IsEquivalence _≈ₐ_
cong : Congruent _≈ₐ_ _≈ᵢ_ d
nonNegative : NonNegative _≤_ d 0#
 
open IsPartialOrder isPartialOrder public
renaming (module Eq to EqI)
 
module EqC = IsEquivalence ≈-isEquivalence
 
------------------------------------------------------------------------
-- Pre-metrics
 
record IsPreMetric (d : DistanceFunction A I)
: Set (a ⊔ i ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
field
isProtoMetric : IsProtoMetric d
≈⇒0 : Definite _≈ₐ_ _≈ᵢ_ d 0#
 
open IsProtoMetric isProtoMetric public
 
------------------------------------------------------------------------
-- Quasi-semi-metrics
 
record IsQuasiSemiMetric (d : DistanceFunction A I)
: Set (a ⊔ i ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
field
isPreMetric : IsPreMetric d
0⇒≈ : Indiscernable _≈ₐ_ _≈ᵢ_ d 0#
 
open IsPreMetric isPreMetric public
 
------------------------------------------------------------------------
-- Semi-metrics
 
record IsSemiMetric (d : DistanceFunction A I)
: Set (a ⊔ i ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
field
isQuasiSemiMetric : IsQuasiSemiMetric d
sym : Symmetric _≈ᵢ_ d
 
open IsQuasiSemiMetric isQuasiSemiMetric public
 
------------------------------------------------------------------------
-- General metrics
 
-- A general metric obeys a generalised form of the triangle inequality.
-- It can be specialised to a standard metric/ultrametric/inframetric
-- etc. by providing the correct operator.
--
-- Furthermore we do not assume that _∙_ & 0# form a monoid as
-- associativity does not hold for p-relaxed metrics/p-inframetrics and
-- the identity laws do not hold for ultrametrics over negative
-- codomains.
--
-- See "Properties of distance spaces with power triangle inequalities"
-- by Daniel J. Greenhoe, 2016 (arXiv)
 
record IsGeneralMetric (_∙_ : Op₂ I) (d : DistanceFunction A I)
: Set (a ⊔ i ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
field
isSemiMetric : IsSemiMetric d
triangle : TriangleInequality _≤_ _∙_ d
 
open IsSemiMetric isSemiMetric public