123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051-------------------------------------------------------------------------- The Agda standard library---- Properties of These------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.These.Properties where open import Data.Product.Base using (_×_; _,_; <_,_>; uncurry)open import Data.These.Base using (These; this; that; these)open import Function.Base using (_∘_)open import Relation.Binary.Definitions using (DecidableEquality)open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong; cong₂)open import Relation.Nullary.Decidable using (yes; no; map′; _×-dec_) -------------------------------------------------------------------------- Equality module _ {a b} {A : Set a} {B : Set b} where this-injective : ∀ {x y : A} → this {B = B} x ≡ this y → x ≡ y this-injective refl = refl that-injective : ∀ {a b : B} → that {A = A} a ≡ that b → a ≡ b that-injective refl = refl these-injectiveˡ : ∀ {x y : A} {a b : B} → these x a ≡ these y b → x ≡ y these-injectiveˡ refl = refl these-injectiveʳ : ∀ {x y : A} {a b : B} → these x a ≡ these y b → a ≡ b these-injectiveʳ refl = refl these-injective : ∀ {x y : A} {a b : B} → these x a ≡ these y b → x ≡ y × a ≡ b these-injective = < these-injectiveˡ , these-injectiveʳ > ≡-dec : DecidableEquality A → DecidableEquality B → DecidableEquality (These A B) ≡-dec dec₁ dec₂ (this x) (this y) = map′ (cong this) this-injective (dec₁ x y) ≡-dec dec₁ dec₂ (this x) (that y) = no λ() ≡-dec dec₁ dec₂ (this x) (these y b) = no λ() ≡-dec dec₁ dec₂ (that x) (this y) = no λ() ≡-dec dec₁ dec₂ (that x) (that y) = map′ (cong that) that-injective (dec₂ x y) ≡-dec dec₁ dec₂ (that x) (these y b) = no λ() ≡-dec dec₁ dec₂ (these x a) (this y) = no λ() ≡-dec dec₁ dec₂ (these x a) (that y) = no λ() ≡-dec dec₁ dec₂ (these x a) (these y b) = map′ (uncurry (cong₂ these)) these-injective (dec₁ x y ×-dec dec₂ a b)