← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
123456789101112131415161718192021222324252627282930313233343536373839
------------------------------------------------------------------------
-- The Agda standard library
--
-- Heterogeneous `All` predicate for disjoint sums
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Data.Sum.Relation.Unary.All where
 
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Level using (Level; _⊔_)
open import Relation.Unary using (Pred)
 
private
variable
a b c p q : Level
A B : Set _
P Q : Pred A p
 
------------------------------------------------------------------------
-- Definition
 
data All {A : Set a} {B : Set b} (P : Pred A p) (Q : Pred B q)
: Pred (A ⊎ B) (a ⊔ b ⊔ p ⊔ q) where
inj₁ : ∀ {a} → P a → All P Q (inj₁ a)
inj₂ : ∀ {b} → Q b → All P Q (inj₂ b)
 
------------------------------------------------------------------------
-- Operations
 
-- Elimination
 
[_,_] : ∀ {C : (x : A ⊎ B) → All P Q x → Set c} →
((x : A) (y : P x) → C (inj₁ x) (inj₁ y)) →
((x : B) (y : Q x) → C (inj₂ x) (inj₂ y)) →
(x : A ⊎ B) (y : All P Q x) → C x y
[ f , g ] (inj₁ x) (inj₁ y) = f x y
[ f , g ] (inj₂ x) (inj₂ y) = g x y