← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lists where every pair of elements are related (symmetrically)
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
open import Relation.Binary.Core using (Rel; _⇒_)
 
module Data.List.Relation.Unary.AllPairs
{a ℓ} {A : Set a} {R : Rel A ℓ} where
 
open import Data.List.Base using (List; []; _∷_)
open import Data.List.Relation.Unary.All as All using (All; []; _∷_)
open import Data.Product.Base as Prod using (_,_; _×_; uncurry; <_,_>)
open import Function.Base using (id; _∘_)
open import Level using (_⊔_)
open import Relation.Binary.Definitions as B
open import Relation.Binary.Construct.Intersection renaming (_∩_ to _∩ᵇ_)
open import Relation.Binary.PropositionalEquality.Core using (refl; cong₂)
open import Relation.Unary as U renaming (_∩_ to _∩ᵘ_) hiding (_⇒_)
open import Relation.Nullary.Decidable as Dec using (_×-dec_; yes; no)
 
------------------------------------------------------------------------
-- Definition
 
open import Data.List.Relation.Unary.AllPairs.Core public
 
------------------------------------------------------------------------
-- Operations
 
head : ∀ {x xs} → AllPairs R (x ∷ xs) → All (R x) xs
head (px ∷ pxs) = px
 
tail : ∀ {x xs} → AllPairs R (x ∷ xs) → AllPairs R xs
tail (px ∷ pxs) = pxs
 
uncons : ∀ {x xs} → AllPairs R (x ∷ xs) → All (R x) xs × AllPairs R xs
uncons = < head , tail >
 
module _ {q} {S : Rel A q} where
 
map : R ⇒ S → AllPairs R ⊆ AllPairs S
map ~₁⇒~₂ [] = []
map ~₁⇒~₂ (x~xs ∷ pxs) = All.map ~₁⇒~₂ x~xs ∷ (map ~₁⇒~₂ pxs)
 
module _ {s t} {S : Rel A s} {T : Rel A t} where
 
zipWith : R ∩ᵇ S ⇒ T → AllPairs R ∩ᵘ AllPairs S ⊆ AllPairs T
zipWith f ([] , []) = []
zipWith f (px ∷ pxs , qx ∷ qxs) = All.zipWith f (px , qx) ∷ zipWith f (pxs , qxs)
 
unzipWith : T ⇒ R ∩ᵇ S → AllPairs T ⊆ AllPairs R ∩ᵘ AllPairs S
unzipWith f [] = [] , []
unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (All.unzipWith f rx) (unzipWith f rxs)
 
module _ {s} {S : Rel A s} where
 
zip : AllPairs R ∩ᵘ AllPairs S ⊆ AllPairs (R ∩ᵇ S)
zip = zipWith id
 
unzip : AllPairs (R ∩ᵇ S) ⊆ AllPairs R ∩ᵘ AllPairs S
unzip = unzipWith id
 
------------------------------------------------------------------------
-- Properties of predicates preserved by AllPairs
 
allPairs? : B.Decidable R → U.Decidable (AllPairs R)
allPairs? R? [] = yes []
allPairs? R? (x ∷ xs) =
Dec.map′ (uncurry _∷_) uncons (All.all? (R? x) xs ×-dec allPairs? R? xs)
 
irrelevant : B.Irrelevant R → U.Irrelevant (AllPairs R)
irrelevant irr [] [] = refl
irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) =
cong₂ _∷_ (All.irrelevant irr px₁ px₂) (irrelevant irr pxs₁ pxs₂)
 
satisfiable : U.Satisfiable (AllPairs R)
satisfiable = [] , []