12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061-------------------------------------------------------------------------- The Agda standard library---- A definition for the permutation relation using setoid equality------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.List.Relation.Binary.Permutation.Homogeneous where open import Data.List.Base using (List; _∷_)open import Data.List.Relation.Binary.Pointwise.Base as Pointwise using (Pointwise)open import Data.List.Relation.Binary.Pointwise.Properties as Pointwise using (symmetric)open import Level using (Level; _⊔_)open import Relation.Binary.Core using (Rel; _⇒_)open import Relation.Binary.Bundles using (Setoid)open import Relation.Binary.Structures using (IsEquivalence)open import Relation.Binary.Definitions using (Reflexive; Symmetric) private variable a r s : Level A : Set a data Permutation {A : Set a} (R : Rel A r) : Rel (List A) (a ⊔ r) where refl : ∀ {xs ys} → Pointwise R xs ys → Permutation R xs ys prep : ∀ {xs ys x y} (eq : R x y) → Permutation R xs ys → Permutation R (x ∷ xs) (y ∷ ys) swap : ∀ {xs ys x y x′ y′} (eq₁ : R x x′) (eq₂ : R y y′) → Permutation R xs ys → Permutation R (x ∷ y ∷ xs) (y′ ∷ x′ ∷ ys) trans : ∀ {xs ys zs} → Permutation R xs ys → Permutation R ys zs → Permutation R xs zs -------------------------------------------------------------------------- The Permutation relation is an equivalence module _ {R : Rel A r} where sym : Symmetric R → Symmetric (Permutation R) sym R-sym (refl xs∼ys) = refl (Pointwise.symmetric R-sym xs∼ys) sym R-sym (prep x∼x′ xs↭ys) = prep (R-sym x∼x′) (sym R-sym xs↭ys) sym R-sym (swap x∼x′ y∼y′ xs↭ys) = swap (R-sym y∼y′) (R-sym x∼x′) (sym R-sym xs↭ys) sym R-sym (trans xs↭ys ys↭zs) = trans (sym R-sym ys↭zs) (sym R-sym xs↭ys) isEquivalence : Reflexive R → Symmetric R → IsEquivalence (Permutation R) isEquivalence R-refl R-sym = record { refl = refl (Pointwise.refl R-refl) ; sym = sym R-sym ; trans = trans } setoid : Reflexive R → Symmetric R → Setoid _ _ setoid R-refl R-sym = record { isEquivalence = isEquivalence R-refl R-sym } map : ∀ {R : Rel A r} {S : Rel A s} → (R ⇒ S) → (Permutation R ⇒ Permutation S)map R⇒S (refl xs∼ys) = refl (Pointwise.map R⇒S xs∼ys)map R⇒S (prep e xs∼ys) = prep (R⇒S e) (map R⇒S xs∼ys)map R⇒S (swap e₁ e₂ xs∼ys) = swap (R⇒S e₁) (R⇒S e₂) (map R⇒S xs∼ys)map R⇒S (trans xs∼ys ys∼zs) = trans (map R⇒S xs∼ys) (map R⇒S ys∼zs)