123456789101112131415161718192021222324252627282930313233343536373839404142434445-------------------------------------------------------------------------- The Agda standard library---- Any (◇) for containers------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Container.Relation.Unary.Any where open import Level using (_⊔_)open import Relation.Unary using (Pred; _⊆_)open import Data.Product.Base using (_,_; proj₂; ∃)open import Function.Base using (_∘′_; id) open import Data.Container.Core hiding (map)import Data.Container.Morphism as M record ◇ {s p} (C : Container s p) {x ℓ} {X : Set x} (P : Pred X ℓ) (cx : ⟦ C ⟧ X) : Set (p ⊔ ℓ) where constructor any field proof : ∃ λ p → P (proj₂ cx p) module _ {s₁ p₁ s₂ p₂} {C : Container s₁ p₁} {D : Container s₂ p₂} {x ℓ ℓ′} {X : Set x} {P : Pred X ℓ} {Q : Pred X ℓ′} where map : (f : C ⇒ D) → P ⊆ Q → ◇ D P ∘′ ⟪ f ⟫ ⊆ ◇ C Q map f P⊆Q (any (p , P)) .◇.proof = f .position p , P⊆Q P module _ {s₁ p₁ s₂ p₂} {C : Container s₁ p₁} {D : Container s₂ p₂} {x ℓ} {X : Set x} {P : Pred X ℓ} where map₁ : (f : C ⇒ D) → ◇ D P ∘′ ⟪ f ⟫ ⊆ ◇ C P map₁ f = map f id module _ {s p} {C : Container s p} {x ℓ ℓ′} {X : Set x} {P : Pred X ℓ} {Q : Pred X ℓ′} where map₂ : P ⊆ Q → ◇ C P ⊆ ◇ C Q map₂ = map (M.id C)