12345678910111213141516171819202122232425262728293031323334353637383940414243-------------------------------------------------------------------------- The Agda standard library---- All (□) for containers------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Container.Relation.Unary.All where open import Level using (_⊔_)open import Relation.Unary using (Pred; _⊆_)open import Data.Product.Base using (_,_; proj₁; proj₂; ∃)open import Function.Base using (_∘′_; id) open import Data.Container.Core hiding (map)import Data.Container.Morphism as M record □ {s p} (C : Container s p) {x ℓ} {X : Set x} (P : Pred X ℓ) (cx : ⟦ C ⟧ X) : Set (p ⊔ ℓ) where constructor all field proof : ∀ p → P (proj₂ cx p) module _ {s₁ p₁ s₂ p₂} {C : Container s₁ p₁} {D : Container s₂ p₂} {x ℓ ℓ′} {X : Set x} {P : Pred X ℓ} {Q : Pred X ℓ′} where map : (f : C ⇒ D) → P ⊆ Q → □ C P ⊆ □ D Q ∘′ ⟪ f ⟫ map f P⊆Q (all prf) .□.proof p = P⊆Q (prf (f .position p)) module _ {s₁ p₁ s₂ p₂} {C : Container s₁ p₁} {D : Container s₂ p₂} {x ℓ} {X : Set x} {P : Pred X ℓ} where map₁ : (f : C ⇒ D) → □ C P ⊆ □ D P ∘′ ⟪ f ⟫ map₁ f = map f id module _ {s p} {C : Container s p} {x ℓ ℓ′} {X : Set x} {P : Pred X ℓ} {Q : Pred X ℓ′} where map₂ : P ⊆ Q → □ C P ⊆ □ C Q map₂ = map (M.id C)