← Back

Modules

Leios

  • Abstract
  • Base
  • Blocks
  • Config
  • Defaults
  • FFD
  • Foreign.BaseTypes
  • Foreign.HsTypes
  • Foreign.Types
  • Foreign.Util
  • KeyRegistration
  • Network
  • Prelude
  • Protocol
  • Short
  • Short.Decidable
  • Short.Trace.Verifier
  • Short.Trace.Verifier.Test
  • Simplified
  • Simplified.Deterministic
  • SpecStructure
  • Traces
  • Voting
  • VRF
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
------------------------------------------------------------------------
-- The Agda standard library
--
-- Propertiers of any for containers
------------------------------------------------------------------------
 
{-# OPTIONS --cubical-compatible --safe #-}
 
module Data.Container.Morphism.Properties where
 
open import Level using (_⊔_; suc)
open import Function.Base as F using (_$_)
open import Data.Product.Base using (∃; proj₁; proj₂; _,_)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_; _≗_)
 
open import Data.Container.Core
open import Data.Container.Morphism
open import Data.Container.Relation.Binary.Equality.Setoid
 
-- Identity
 
module _ {s p} (C : Container s p) where
 
id-correct : ∀ {x} {X : Set x} → ⟪ id C ⟫ {X = X} ≗ F.id
id-correct x = ≡.refl
 
-- Composition.
 
module _ {s₁ s₂ s₃ p₁ p₂ p₃}
{C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {C₃ : Container s₃ p₃}
where
 
∘-correct : (f : C₂ ⇒ C₃) (g : C₁ ⇒ C₂) → ∀ {x} {X : Set x} →
⟪ f ∘ g ⟫ {X = X} ≗ (⟪ f ⟫ F.∘ ⟪ g ⟫)
∘-correct f g xs = ≡.refl
 
module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} where
 
-- Naturality.
 
Natural : ∀ x e → (∀ {X : Set x} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X) →
Set (s₁ ⊔ s₂ ⊔ p₁ ⊔ p₂ ⊔ suc (x ⊔ e))
Natural x e m =
∀ {X : Set x} (Y : Setoid x e) → let module Y = Setoid Y in
(f : X → Y.Carrier) (xs : ⟦ C₁ ⟧ X) →
Eq Y C₂ (m $ map f xs) (map f $ m xs)
 
-- Container morphisms are natural.
 
natural : ∀ (m : C₁ ⇒ C₂) x e → Natural x e ⟪ m ⟫
natural m x e Y f xs = refl Y C₂
 
module _ {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where
 
-- Natural transformations.
 
NT : ∀ x e → Set (s₁ ⊔ s₂ ⊔ p₁ ⊔ p₂ ⊔ suc (x ⊔ e))
NT x e = ∃ λ (m : ∀ {X : Set x} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X) → Natural x e m
 
module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} where
 
-- All natural functions of the right type are container morphisms.
 
complete : ∀ {e} → (nt : NT C₁ C₂ p₁ e) →
∃ λ m → (X : Setoid p₁ e) → let module X = Setoid X in
∀ xs → Eq X C₂ (proj₁ nt xs) (⟪ m ⟫ xs)
complete (nt , nat) =
(m , λ X xs → nat X (proj₂ xs) (proj₁ xs , F.id)) where
 
m : C₁ ⇒ C₂
m .shape = λ s → proj₁ (nt (s , F.id))
m .position = proj₂ (nt (_ , F.id))