123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221IndexedCoproductOf⇒coIndexedProductOf : ∀ {i} {I : Set i} {P : I → Obj} → IndexedCoproductOf P → IndexedProductOf PcoIndexedProductOf⇒IndexedCoproductOf : ∀ {i} {I : Set i} {P : I → Obj} → IndexedProductOf P → IndexedCoproductOf PcoIsKernel⟺IsCokernel : ∀ {isKernel : IsKernel k f} → IsCokernel⇒coIsKernel (coIsKernel⇒IsCokernel isKernel) ≡ isKernelIsCokernel⟺coIsKernel : ∀ {isCokernel : IsCokernel f k} → coIsKernel⇒IsCokernel (IsCokernel⇒coIsKernel isCokernel) ≡ isCokernel