12345678910111213141516171819202122232425262728293031323334353637383940414243444546-------------------------------------------------------------------------- The Agda standard library---- Basic definitions for morphisms between algebraic structures------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Core module Algebra.Morphism.Definitions {a} (A : Set a) -- The domain of the morphism {b} (B : Set b) -- The codomain of the morphism {ℓ} (_≈_ : Rel B ℓ) -- The equality relation over the codomain where open import Algebra.Core using (Op₁; Op₂) -------------------------------------------------------------------------- Basic definitions Homomorphic₀ : (A → B) → A → B → Set _Homomorphic₀ ⟦_⟧ ∙ ∘ = ⟦ ∙ ⟧ ≈ ∘ Homomorphic₁ : (A → B) → Op₁ A → Op₁ B → Set _Homomorphic₁ ⟦_⟧ ∙_ ∘_ = ∀ x → ⟦ ∙ x ⟧ ≈ (∘ ⟦ x ⟧) Homomorphic₂ : (A → B) → Op₂ A → Op₂ B → Set _Homomorphic₂ ⟦_⟧ _∙_ _∘_ = ∀ x y → ⟦ x ∙ y ⟧ ≈ (⟦ x ⟧ ∘ ⟦ y ⟧) -------------------------------------------------------------------------- DEPRECATED NAMES-------------------------------------------------------------------------- Please use the new names as continuing support for the old names is-- not guaranteed. -- Version 1.3 Morphism : Set _Morphism = A → B {-# WARNING_ON_USAGE Morphism"Warning: Morphism was deprecated in v1.3.Please use the standard function notation (e.g. A → B) instead."#-}