1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586-------------------------------------------------------------------------- The Agda standard library---- Basic auxiliary definitions for magma-like structures------------------------------------------------------------------------ -- You're unlikely to want to use this module directly. Instead you-- probably want to be importing the appropriate module from-- `Algebra.Properties.(Magma/Semigroup/...).Divisibility` {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Bundles.Raw using (RawMagma)open import Data.Product.Base using (_×_; ∃)open import Level using (_⊔_)open import Relation.Binary.Core using (Rel)open import Relation.Nullary.Negation.Core using (¬_) module Algebra.Definitions.RawMagma {a ℓ} (M : RawMagma a ℓ) where open RawMagma M renaming (Carrier to A) -------------------------------------------------------------------------- Divisibility infix 5 _∣ˡ_ _∤ˡ_ _∣ʳ_ _∤ʳ_ _∣_ _∤_ _∣∣_ _∤∤_ -- Divisibility from the left.---- This and, the definition of right divisibility below, are defined as-- records rather than in terms of the base product type in order to-- make the use of pattern synonyms more ergonomic (see #2216 for-- further details). The record field names are not designed to be-- used explicitly and indeed aren't re-exported publicly by-- `Algebra.X.Properties.Divisibility` modules. record _∣ˡ_ (x y : A) : Set (a ⊔ ℓ) where constructor _,_ field quotient : A equality : x ∙ quotient ≈ y _∤ˡ_ : Rel A (a ⊔ ℓ)x ∤ˡ y = ¬ x ∣ˡ y -- Divisibility from the right record _∣ʳ_ (x y : A) : Set (a ⊔ ℓ) where constructor _,_ field quotient : A equality : quotient ∙ x ≈ y _∤ʳ_ : Rel A (a ⊔ ℓ)x ∤ʳ y = ¬ x ∣ʳ y -- General divisibility -- The relations _∣ˡ_ and _∣ʳ_ are only equivalent when _∙_ is-- commutative. When that is not the case we take `_∣ʳ_` to be the-- primary one. _∣_ : Rel A (a ⊔ ℓ)_∣_ = _∣ʳ_ _∤_ : Rel A (a ⊔ ℓ)x ∤ y = ¬ x ∣ y -------------------------------------------------------------------------- Mutual divisibility. -- In a monoid, this is an equivalence relation extending _≈_.-- When in a cancellative monoid, elements related by _∣∣_ are called-- associated, and `x ∣∣ y` means that `x` and `y` differ by some-- invertible factor. -- Example: for ℕ this is equivalent to x ≡ y,-- for ℤ this is equivalent to (x ≡ y or x ≡ - y). _∣∣_ : Rel A (a ⊔ ℓ)x ∣∣ y = x ∣ y × y ∣ x _∤∤_ : Rel A (a ⊔ ℓ)x ∤∤ y = ¬ x ∣∣ y