123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108-------------------------------------------------------------------------- The Agda standard library---- Basic auxiliary definitions for magma-like structures------------------------------------------------------------------------ -- You're unlikely to want to use this module directly. Instead you-- probably want to be importing the appropriate module from-- `Algebra.Properties.(Magma/Semigroup/...).Divisibility` {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Bundles.Raw using (RawMagma)open import Data.Product.Base using (_×_)open import Level using (_⊔_)open import Relation.Binary.Core using (Rel)open import Relation.Nullary.Negation.Core using (¬_) module Algebra.Definitions.RawMagma {a ℓ} (M : RawMagma a ℓ) where open RawMagma M renaming (Carrier to A) -------------------------------------------------------------------------- Divisibility infixr 4 _,_infix 5 _∣ˡ_ _∤ˡ_ _∣ʳ_ _∤ʳ_ _∣_ _∤_ _∥_ _∦_ -- Divisibility from the left.---- This and, the definition of right divisibility below, are defined as-- records rather than in terms of the base product type in order to-- make the use of pattern synonyms more ergonomic (see #2216 for-- further details). The record field names are not designed to be-- used explicitly and indeed aren't re-exported publicly by-- `Algebra.Properties.X.Divisibility` modules. record _∣ˡ_ (x y : A) : Set (a ⊔ ℓ) where constructor _,_ field quotient : A equality : x ∙ quotient ≈ y _∤ˡ_ : Rel A (a ⊔ ℓ)x ∤ˡ y = ¬ x ∣ˡ y -- Divisibility from the right record _∣ʳ_ (x y : A) : Set (a ⊔ ℓ) where constructor _,_ field quotient : A equality : quotient ∙ x ≈ y _∤ʳ_ : Rel A (a ⊔ ℓ)x ∤ʳ y = ¬ x ∣ʳ y -- General divisibility -- The relations _∣ˡ_ and _∣ʳ_ are only equivalent when _∙_ is-- commutative. When that is not the case we take `_∣ʳ_` to be the-- primary one. _∣_ : Rel A (a ⊔ ℓ)_∣_ = _∣ʳ_ _∤_ : Rel A (a ⊔ ℓ)x ∤ y = ¬ x ∣ y -------------------------------------------------------------------------- Mutual divisibility. -- In a monoid, this is an equivalence relation extending _≈_.-- When in a cancellative monoid, elements related by _∣∣_ are called-- associated, and `x ∣∣ y` means that `x` and `y` differ by some-- invertible factor. -- Example: for ℕ this is equivalent to x ≡ y,-- for ℤ this is equivalent to (x ≡ y or x ≡ - y). _∥_ : Rel A (a ⊔ ℓ)x ∥ y = x ∣ y × y ∣ x _∦_ : Rel A (a ⊔ ℓ)x ∦ y = ¬ x ∥ y -------------------------------------------------------------------------- DEPRECATED NAMES-------------------------------------------------------------------------- Please use the new names as continuing support for the old names is-- not guaranteed. -- Version 2.3 _∣∣_ = _∥_{-# WARNING_ON_USAGE _∣∣_"Warning: _∣∣_ was deprecated in v2.3.Please use _∥_ instead."#-}_∤∤_ = _∦_{-# WARNING_ON_USAGE _∤∤_"Warning: _∤∤_ was deprecated in v2.3.Please use _∦_ instead."#-}