12345678910111213141516171819202122232425262728293031323334353637383940414243-------------------------------------------------------------------------- The Agda standard library---- Lemmas relating algebraic definitions (such as associativity and-- commutativity) that don't require the equality relation to be a setoid.------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Algebra.Consequences.Base {a} {A : Set a} where open import Algebra.Coreopen import Algebra.Definitionsopen import Data.Sum.Baseopen import Relation.Binary.Coreopen import Relation.Binary.Definitions using (Reflexive) module _ {ℓ} {_•_ : Op₂ A} (_≈_ : Rel A ℓ) where sel⇒idem : Selective _≈_ _•_ → Idempotent _≈_ _•_ sel⇒idem sel x = reduce (sel x x) module _ {ℓ} {f : Op₁ A} (_≈_ : Rel A ℓ) where reflexive∧selfInverse⇒involutive : Reflexive _≈_ → SelfInverse _≈_ f → Involutive _≈_ f reflexive∧selfInverse⇒involutive refl inv _ = inv refl -------------------------------------------------------------------------- DEPRECATED NAMES-------------------------------------------------------------------------- Please use the new names as continuing support for the old names is-- not guaranteed. -- Version 2.0 reflexive+selfInverse⇒involutive = reflexive∧selfInverse⇒involutive{-# WARNING_ON_USAGE reflexive+selfInverse⇒involutive"Warning: reflexive+selfInverse⇒involutive was deprecated in v2.0.Please use reflexive∧selfInverse⇒involutive instead."#-}