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1 Introduction

This technical design document bridges the gap between the protocol-level specification (CIP-
164) and its concrete implementation in cardano-node. While CIP-164 defines what the Leios
protocol is and why it benefits Cardano, this document addresses how to implement it reliably
and serve as a practical guide for implementation teams.

This document builds on the conducted impact analysis and threat modeling. The document
outlines the necessary architecture changes, highlights key risks and mitigation strategies, and
proposes an implementation roadmap. As the implementation plan itself contains exploratory
tasks, this document can be considered a living document and reflects our current understanding
of the protocol, as well as design decisions taken during implementation.

Besides collecting node-specific details in this document, we intend to contribute implementation-
independent specifications to the cardano-blueprint initiative and also update the CIP-164 spec-
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ification through pull requests as needed.

Document history

This document is a living artifact and will be updated as implementation progresses, new risks
are identified, and validation results become available.

Version Date Changes

0.6 2025-11-25 Risks and mitigations with key threats
0.5 2025-10-29 Re-structure and start design chapter with impact analysis content
0.4 2025-10-27 Add overview chapter
0.3 2025-10-25 Add dependencies and interactions
0.2 2025-10-24 Add implementation plan
0.1 2025-10-15 Initial draft

2 Overview

Cardano as a cryptocurrency system fundamentally relies on an implementation of Ouroboros,
the consensus protocol (TODO cite praos and genesis papers), to realize a permissionless, glob-
ally distributed ledger. The consensus protocol provides two essential properties that underpin
Cardanos value proposition: persistence ensures immutability of confirmed transactions, while
liveness guarantees that new valid transactions will be included. These properties enable se-
cure and censorship-resistant transfer of value, as well as the execution of smart contracts in a
trustless manner.

Ouroboros Leios introduces high-throughput as a third fundamental property, extending the
currently deployed Ouroboros Praos variant. By enabling the network to process a significantly
higher number of transactions per second, Leios addresses the economic scalability requirements
necessary to support a growing user base and application ecosystem. This enhancement trans-
forms Cardano from a system optimized for security and decentralization into one that maintains
these properties while achieving higher transaction processing capacity demanded by modern
blockchain applications.

2.1 From research to implementation

As was the case for the Praos variant of Ouroboros, the specification embodied in the pub-
lished and peer-reviewed research paper for Ouroboros Leios was not intended to be directly
implementable. Initial research and development studies confirmed this expectation, identifying
several unsolved problems with the fully concurrent block production design when considering
the concrete Cardano ledger and what consequences this would have (TODO: cite suitable R&D
reports, Tech Report #2, Impact analysis survey); further research is needed before those parts
can be implemented.
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The design presented in CIP-164, also known as Linear Leios, focuses on the core insight of
utilizing the unused network bandwidth and computational resources during the necessary and
eponymous calm periods of the Praos protocol. This approach provides an immediately imple-
mentable design that can deliver orders of magnitude higher throughput while preserving the
security guarantees that make Cardano valuable.

The Linear Leios protocol operates by allowing a second, bigger type of block to be produced
in the same block production opportunity. Block producers can produce and announce an
endorser block (EB), which endorses additional transactions that would not fit within the Praos
block. EBs are distributed through the network and subjected to validation by a committee
of stake pools, who vote on their transaction data closures availability and validity. Only EBs
that achieve a high threshold of stake-weighted votes become certified and can be included in
the ledger through exclusive anchoring of a certificate in the subsequent block - now called a
ranking block (RB). This mechanism allows for significantly higher transaction throughput while
maintaining the security properties of the underlying Praos consensus. See the CIP for more
details on the protocol specification and rationale itself.

2.2 Cardano node as a real-time system

The implementation of Leios must be understood in the context of the Cardano node as a
concurrent, reactive system operating under real-time constraints in an adversarial environment.
While real-time in this context does not refer to the millisecond-level hard deadlines found in
industrial control systems, timely action at the scale of seconds nontheless remains crucial to
protocol success and network security.

The currently deployed Praos implementation establishes clear data diffusion targets: blocks
must reach 95% of nodes within the 5-second parameter, with target performance at 98% and
stretch goals at 99%. While these are comfortably achieved most of the time, blocks are regularly
adopted within 1 second across the network, there are some situations even in the current system
where the target is not reached. For example, due to reward calculations happening at the epoch
boundary.

Despite being hard deadlines, these targets reflect the reality that network vulnerability increases
when not being met. The protocols safety and liveness guarantees depend on honest nodes being
able to propagate blocks rapidly enough to prevent adversarial forks from gaining traction.
Failure to meet these timing constraints can lead to increased rates of short forks, reduced chain
quality, and - if persistent - ultimately compromise the integrity of the ledger.

2.3 Concurrency and resource management

The current primary responsibilities of a Cardano node are roughly:

• Block diffusion: receiving chains from upstream, validate and select the best chain, and
transmit chains downstream.
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• Transaction submission: receiving, validating, and transmitting transactions to be included
in blocks.

• Block production: creating new blocks and extending current chain when selected as slot
leader.

Despite this apparent simplicity, this already results in a highly concurrent system once cardi-
nalities of upstream and downstream network peers are considered. A cardano-node with the
default configuration maintains 20 upstream hot peers, 10 upstream warm peers and can have
up to a few hundred downstream connections, each of which may be simultaneously requesting
or serving data. All of these operations share critical resources, including memory, CPU, and
network bandwidth, requiring careful resource management to ensure timing requirements are
met even under load.

Concretely, in the current system there are (including protocols for supporting features like peer
sharing):

• 2 pipelined + 3 non-pipelined instances per upstream peers => 7 threads per upstream
peer;

• 1 pipelined + 4 non-pipelined instances per downstream peer => 6 threads per downstream
peer

Leios significantly expands this concurrency model by introducing new responsibilities:

• Endorser block and closure diffusion: receiving, validating, and transmitting EBs and their
transaction closures.

• Voting and vote diffusion: receiving, validating, and transmitting own and foreign votes
on EBs.

Given the proposed Leios mini-protocols, this would result in:

• 4 pipelined + 3 non-pipelined per upstream peers => 11 threads per upstream peer;
• 1 pipelined + 6 non-pipelined per downstream peer => 8 threads per downstream peer

With these two additional functionalities, each across many peers, the node set of concurrent
tasks strictly increases. The implementation must ensure that the increased data flows and
processing demands do not interfere with each other, or priorization mechanisms ensure to meet
the stringent timing constraints necessary for protocol security.

2.4 Designing for the worst-case

Related to the principle of optimizing for the worst case, the security argument for Leios protocol
depends critically on worst-case diffusion characteristics. Endorser blocks and their transaction
closures must be small enough that the difference between optimistic diffusion (leading to suc-
cessful certification) and worst-case diffusion remains bounded by the protocol parameter Ldiff

according to the protocols security argument.
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If the optimistic, average-case performance is improved with suitable algorithms, data structures
and optimizations, but the worst-case scenario is not, more conservative parameter choices would
be required to maintain security guarantees. This would negate the anticipated benefits of the
optimizations in the first place. Therefore, the implementation must prioritize ensuring that
even in adverse network conditions or under attack, the diffusion of EBs and their closures
remains within acceptable bounds.

[!WARNING] TODO: the situation is not as dire though, we have some design free-
dom because strictly less work needs to be done on the worst-case path (e.g. rely on
certified validity and cheaply build ledger states instead of validating transactions)

Besides, as with Praos, the enhanced information exchange requirements of Leios must not
compromise the systems resilience against denial of service attacks and asymmetric resource
consumption attempts. The implementation must maintain defensive properties while support-
ing the increased data flows and processing requirements that enable higher throughput.

2.5 Implementation imperatives

In summary, the technical design described in subsequent chapters must ensure that nodes con-
tinue to operate reactively and meet timing requirements despite increased responsibilities and
data volumes. This requires careful bounding of resource usage and sophisticated prioritization
mechanisms across concurrent responsibilities.

The complexity of this challenge emphasizes the critical importance of non-functional require-
ments specification for each component, rigorous performance engineering practices, and con-
tinuous benchmark validation throughout the development process. Only through systematic
attention to these implementation details can the protocol deliver the security and performance
properties that make Leios a valuable enhancement to Cardanos capabilities.

The following chapters detail the specific risks that inform architectural decisions, the concrete
technical design that addresses these challenges, and the implementation plan that will deliver
a production-ready system.

3 Implementation plan

The implementation of Ouroboros Leios represents a substantial evolution of the Cardano con-
sensus protocol, introducing high throughput as a third key property alongside the existing
persistence and liveness guarantees. The path from protocol specification to production deploy-
ment requires careful validation of assumptions, progressive refinement through multiple system
readiness levels, and continuous demonstration of correctness and performance characteristics.
This chapter outlines the strategy for maturing the Leios protocol design through systematic
application of formal methods, simulation, prototyping, and testing techniques.
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The result is an implementation plan that not only covers the path to active of CIP-164, but also
serves as a rationale for what concrete steps will be taken on our product roadmap of realizing
Ouroboros Leios.

[!WARNING]

TODO: mention on-disk storage and its availability; relevant for prototyping and
early testnet (chain volume)

TODO: incorporate or at least mention interactions with Peras

TODO: also mention Genesis (potential to only do this later once testnet available?)

3.1 Approach

Research and development of distributed consensus protocols does not follow a linear waterfall
process. Rather, the protocol design must be matured through various stages of validation, each
building confidence in different aspects of the system. The peer-reviewed research paper provides
strong theoretical guarantees under certain assumptions, but translating these guarantees into a
working implementation that operates reliably on real-world infrastructure requires bridging sub-
stantial gaps. The implementation strategy must therefore balance multiple concerns: validating
that core assumptions hold in practice, ensuring that refinements preserve essential properties,
building developer confidence through rigorous testing, and ultimately securing acceptance from
the governing bodies that must approve deployment to mainnet.

The challenge is compounded by the nature of the system itself. Cardano as deployed on main-
net is a globally distributed system with hard real-time constraints operating in an adversarial
environment. Failures or performance degradation cannot be tolerated, as they directly impact
the economic value and security guarantees that users depend upon. This necessitates an im-
plementation approach that validates critical properties early, maintains continuous delivery of
working prototypes, and ensures transparency in both progress and limitations throughout the
development process.

Three principles guide the implementation strategy: First, early validation of critical assump-
tions and risks enables discovery of fundamental problems as early as possible in the development
cycle and reduces the likelihood for wasteful pivots and delays in delivery. Second, the implemen-
tation must progress through continuous delivery of increasingly capable prototypes rather
than attempting to build the complete system in isolation. This allows for empirical validation
at each stage and enables course corrections based on observed behavior. Third, transparency
in both capabilities and limitations must be maintained throughout, ensuring that stakeholders
including stake pool operators and delegated representatives can make informed decisions about
deployment readiness.

These principles are also reflected in the choice of validation techniques applied at each stage.
Formal methods provide the strongest guarantees of correctness but apply to abstracted models.
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Simulation enables exploration of protocol behavior under controlled conditions including adver-
sarial models. Prototypes running on real infrastructure validate that theoretical performance
bounds can be achieved in practice. Public testnets demonstrate end-to-end integration and
allow the broader community to evaluate the system under realistic conditions.

3.2 Correctness in two dimensions

Formal specification and verification play a central role in ensuring correctness throughout the
implementation process, which happens along two dimensions: - Maturity: Implementations
maturing from proof of concept, prototype to production-ready release candidates - Diversity:
Multiple emerging implementations of Cardano nodes using different programming langugages
and targeting slightly different use cases

A protocol specification captured in a formal langugage like Agda, provides an unambiguous
description of the protocol that can be checked for consistency and allows proving equivalence
and other properties. A formal specification serves as the authoritative reference against which
all implementations must be verified.

The approach to formal verification in Leios follows the trail of evidence methodology success-
fully applied in previous Ouroboros consensus implementations. Rather than attempting to
verify the entire codebase directly, which becomes intractable for systems of this complexity, the
methodology establishes correctness through a chain of increasingly refined specifications. For
example, the high-level specification defines the protocol abstractly, while further refined spec-
ifications would focus on details such as message ordering and timing. Finally, an executable
implementation is shown to correspond to the formal specification through a combination of tech-
niques including type safety, property-based testing, and trace verification - often summarized
as conformance testing.

Trace verification deserves particular attention as it provides a bridge between formal specifica-
tions and running code. The approach involves instrumenting both the formal specification and
the implementation to produce detailed execution traces. These traces can then be compared
to verify that the implementation exhibits the same observable behavior as the specification for
given inputs. For consensus protocols, the relevant observable behavior includes the sequence of
blocks produced, the certificates generated, and the final ledger state. By systematically explor-
ing the space of possible inputs including adversarial scenarios, high confidence can be achieved
that the implementation faithfully realizes the specification.

Multiple implementations provide additional assurance through diversity. The primary Haskell
implementation in cardano-node continues to serve as the reference, while alternative imple-
mentations in other languages are currently in development and will eventually increase the
node diversity of Cardano. Alternative implementations on the node- or component-level
serve multiple purposes: - validate that the specification is sufficiently precise and complete, -
exercise different corner cases that might be missed by a single implementation, and - reduce
the risk that a subtle bug in one implementation compromises the entire network.
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The formal specification must be maintained as a living artifact throughout implementation.
As design decisions are made to address practical concerns, these decisions must be reflected
back into the specification to ensure it remains accurate. This bidirectional relationship between
specification and other steps on the implementation plan is essential. The specification guides
implementation, while implementation experience reveals necessary refinements to the specifi-
cation. Documentation of these refinements and the rationale behind them provides crucial
context for future maintainers and for external review. Consequently, the specification itself
and other implementation-independent artifacts will be contributed to the cardano-blueprint
initiative.

3.3 Simulation and protocol validation

Simulations provide a very controlled environment for exploring protocol behavior before deploy-
ing to real infrastructure. Two complementary simulation approaches have been used so far to
validate the proposed protocol in CIP-164, each with distinct strengths and even using different
implementation languages.

A discrete event simulation implemented in Rust, models Leios message exchanges between
nodes, abstracting lower-level details for speedrunning orders of magnitude faster than real time
to enable statistical analysis over thousands of runs with complete observability and arbitrary
adversarial behavior injection. This validates security arguments by systematically exploring
protocol behavior under varying loads, expected data diffusion in small to medium sized network
topologies, or adversarial scenarios like data withholding, and exploration of protocol parameters
before testnet deployment.

Another Haskell-based simulation using IOSim and the actual network framework used in the
cardano-node. This reduces model-implementation divergence while enabling studies of the
dynamic behavior and resource management in detail. While IOSim is used in the existing
network and consensus layers through property-based testing, and extends naturally to Leios
components, the simulator built from this was not able to scale to large networks.

Both approaches necessarily abstract real system details and thus provide evidence of correct
behavior under idealized conditions and suggest workable parameters, but cannot definitively
predict real-world performance. Maintaining simulation synchronization with evolving imple-
mentation requires discipline, but enables rapid exploration of alternatives, early feature valida-
tion, and serves as executable documentation for new developers.

3.4 Prototyping and adversarial testing

Prototypes on real infrastructure validate performance characteristics that simulation typically
cannot guarantee. The line between simulation and prototyping is blurry, but both concepts
share the trait of allowing rapid exploration of the most uncertain aspects of the design before
committing to a full implementation. Referring back to the key threats and assumptions to
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validate early, the primary focus of prototyping is on network diffusion performance under high
throughput conditions and adversarial scenarios.

Network diffusion prototype: An early implementation of the actual Leios network protocols
and freshest-first delivery mechanisms, that allows running experiments with various network
topologies. Ledger validation of Leios concepts is stubbed out and transmitted data is generated
synthetically to focus purely on network performance. Deployed to controlled environments like
local devnets and private testnets like the the Performance and Testing cluster, this prototype
systematically explores how performance scales with network size and block size, tests different
topologies, and crucially answers whether the real network stack achieves the diffusion deadlines
required by protocol security arguments. Key measurements include endorser block arrival
time distributions, freshest-first multiplexing effectiveness, topology impact on diffusion, and
behavior under adversarial scenarios including eclipse attempts and targeted withholding. These
measurements will answer questions like, how much freshest-first delivery we need, whether
the proposed network protocols are practical to implement and what protocol parameter are
feasible.

Adversarial testing represents a crucial aspect of prototype validation. In a controlled environ-
ment, some nodes can still be configured to exhibit adversarial behaviors such as sending invalid
blocks, withholding information, or attempting to exhaust resources of honest nodes. Observing
how honest nodes respond provides evidence that the mitigations described in the design are
effective. Despite using real network communication, such systems can still be determinstically
simulation-tested using tools like Antithesis, which is currently picked up also by node-level tests
in the Cardano community via moog. If we can put this technique to use for adversarial testing
of Leios prototypes and release candidates, this can greatly enhance our ability to validate the
protocol under challenging conditions by exploring a much wider range of adversarial scenarios
than would be feasible through manually created rigit test scenarios.

Beyond networking prototypes, additional focused prototypes may be created to address other
known unknowns of the implementation:

Ledger validation benchmark: measures the throughput of transaction validation and ledger
state updates. This is critical for understanding whether a node can process the contents of
large endorser blocks within the available time budget and confirm whether our models for
transaction validation are correct. The benchmark explores different transaction types and
sizes, measures the impact of caching strategies, and validates the performance improvement
from the no-validation application of certified transactions.

Cryptographic primitives prototype: validates the performance and correctness of the BLS
signature scheme integration. This includes key generation, signing, verification, and aggregation
operations. The prototype must demonstrate that batch verification of large numbers of votes
can complete within the voting period deadline. It also serves to validate the proof-of-possession
mechanism and explore key rotation techniques.

Focused prototypes provide empirical data that complements the theoretical analysis. They
reveal where optimizations are necessary and validate that the required performance is achievable
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with available hardware. They also serve to build developer confidence in the feasibility of the
overall design, as well as directly validate and inform architectural decisions. Discovering a
fundamental performance limitation early, through prototyping, is far preferable to discovering
it late during testnet deployment or, worse, after mainnet deployment.

3.5 Public testnets and integration

A public testnet serves distinct purposes over simulations and controlled environments: it re-
quires integration of all components into a complete implementation, enables for tests under
realistic conditions with diverse node operators and hardware, and allows the community to
experience enhanced throughput directly. While some shortcuts can still be made, the testnet-
ready implementation must offer complete Leios functionality - endorser block production and
diffusion, vote aggregation, certificate formation, ledger integration, enhanced mempool - plus
sufficient robustness for continuous operation and operational tooling for deployment and mon-
itoring.

The testnet enables multiple validation categories. Functional testing verifies correct proto-
col operation: nodes produce endorser blocks when elected, votes aggregate into certificates,
certified blocks incorporate into the ledger, and ledger state remains consistent. Performance
testing measures achieved throughput against business requirements - sustained transaction rate,
mempool-to-ledger latency, and behavior under bursty synthetic workloads. Adversarial testing
is limited on a public testnet, but some attempts with deliberately misbehaving nodes can be
made on withholding blocks, sending invalid data, attempting network partitioning, or resource
exhaustion.

The testnet integrates ecosystem tooling: wallets handling increased throughput, block explor-
ers understanding new structures, monitoring systems tracking Leios metrics, and stake pool
operator documentation and deployment guides. Crucially, the testnet further enables empirical
parameter selection (size limits, timing parameters), where simulation provides initial guidance
but real-world testing with community feedback informs acceptable mainnet values.

Software deployed to the public testnet progressively converges toward mainnet release candi-
dates. Early deployments may use instrumented prototypes lacking production optimizations;
later upgrades run increasingly complete and optimized implementations. Eventually, all changes
as outlined in this design document must be realized in the cardano-node and other node im-
plementations. This progressive refinement maintains community engagement while preserving
engineering velocity. Traces from testnet nodes can still be verified against formal specifications
using the trace verification approach, ultimately linking the abstraction layers.

3.6 Mainnet deployment readiness

Mainnet deployment requires governance approval and operational readiness beyond technical
validation. The Cardano governance process involves delegated representatives and stake pool
operators who need clear understanding of proposed changes, benefits, and risks. Technical
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validation evidence from formal methods, simulation, prototyping, and testnet operation must
be communicated accessibly beyond technical documentation.

Operational readiness encompasses stake pool operator testing in their environments, updated
procedures and training, clearly documented upgrade procedures, updated monitoring and alert-
ing systems, and prepared support channels. The hard fork combinator enables relatively smooth
transitions, but Leios represents substantial consensus changes. Conservative timeline estimates
must account for discovering and addressing unexpected issues - a normal part of the hard-fork
scheduling process. The months of validation and refinement required before prudent mainnet
deployment reflect the critical nature of modifications to a system holding substantial economic
value and providing essential services that users depend upon.

[!WARNING]

TODO: more thoughts:

• why (deltaq) modeling? quick results and continued utility in parameterization
• parameterization in general as a (communication) tool; see also Peras parame-

terization dashboard https://github.com/tweag/cardano-peras/issues/54
• whats left for the hard-fork after all this? more-and-more testing / maturing,

governance-related topics (new protocol parameters, hard-fork coordination)

4 Dependencies and interactions

The changes necessary to realizing Leios must integrate carefully with existing infrastructure
and emerging features. This section examines the critical dependencies that must be satisfied
before Leios deployment, identifies synergies with parallel developments, and analyzes poten-
tial conflicts that require careful coordination. The analysis informs both the implementation
timeline and architectural decisions throughout the development process.

4.1 On-disk storage of ledger state

[!WARNING]

TODO: Add some links and references to UTxO-HD and Ledger-HD specification
and status

The transition from memory-based to disk-based ledger state storage represents a fundamen-
tal prerequisite for Leios deployment. This dependency stems directly from the throughput
characteristics that Leios is designed to enable.

At the time of writing, the latest released cardano-node implementation supports UTxO state
storage on disk through UTxO-HD, while other parts of the ledger state including reward ac-
counts are put on disk within the Ledger-HD initiative. The completion of this transition is
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essential for Leios viability, as the increased transaction volume would otherwise quickly ex-
haust available memory resources on realistic hardware configurations.

The shift to disk-based storage fundamentally alters the resource profile of node operation.
Memory requirements become more predictable and bounded, while disk I/O bandwidth and
storage capacity emerge as primary constraints. Most significantly, ledger state access latency
necessarily increases relative to memory-based operations, and this latency must be accounted
for in the timing constraints that govern transaction validation.

Early validation through comprehensive benchmarking becomes crucial to identify required op-
timizations in ledger state access patterns. The (re-)validation of orders of magnitude bigger
transaction closures, potentially initiated by multiple concurrent threads, places particular stress
on the storage subsystem, as multiple validation threads may contend for access to the same
underlying state. The timing requirements for vote production - where nodes must complete
endorser block validation within the Lvote period - on one hand, and applying (without valida-
tion) thousands transactions during block diffusion on the other hand, impose hard constraints
on acceptable access latencies.

These performance characteristics must be validated empirically rather than estimated theo-
retically. The ledger prototyping described in the implementation plan must therefore include
realistic disk-based storage configurations that mirror the expected deployment environment.

4.2 Synergies with Peras

The relationship between Ouroboros Leios and Ouroboros Peras presents both opportunities
for synergy and challenges requiring careful coordination. As characterized in the Peras design
document, the two protocols are orthogonal in their fundamental mechanisms, Leios address-
ing throughput while Peras improves finality, but their concurrent development and potential
deployment creates several interaction points.

Resource contention and prioritization emerges as the most immediate coordination chal-
lenge. Both protocols introduce additional network traffic that competes with existing Praos
communication. The resource management requirements for Leios - prioritizing Praos traffic
above fresh Leios traffic above stale Leios traffic - must be extended to also accommodate Peras
network messages. Any prioritization scheme requires careful analysis of the timing constraints
for each protocol to ensure that neither compromises the others security guarantees. Current
understanding is that Peras traffic should be prioritized above both, stale and fresh Leios traffic,
such that Leios protocol burst attacks may not force Peras into a cooldown period.

Vote diffusion protocols present a potential area for code reuse, though this opportunity
comes with important caveats. The Leios implementation will initially evaluate the vote diffu-
sion protocols specified in CIP-164 for their resilience against protocol burst attacks and general
performance characteristics. Once the Peras object diffusion mini-protocol becomes available, it
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should also be evaluated for applicability to Leios vote diffusion. However, the distinct perfor-
mance requirements and timing constraints of the two protocols may ultimately demand separate
implementations despite structural similarities.

Cryptographic infrastructure offers the most promising near-term synergy. Both protocols
are based on signature schemes using BLS12-381 keys, creating an opportunity for shared cryp-
tographic infrastructure. If key material can be shared across protocols, stake pool operators
would need to generate and register only one additional key pair rather than separate keys for
each protocol. This shared approach would significantly simplify the bootstrapping process for
whichever protocol deploys second.

The Peras requirement for forward secrecy may necessitate the use of Pixel signatures on top
of the BLS12-381 curve, in addition to BLS (as a VRF) for committee membership proofs,
but this is completely independent of Leios requirements. Furthermore, the proof-of-possession
mechanisms required for BLS aggregation are identical across both protocols, allowing for shared
implementation and validation procedures.

Protocol-level interactions between Leios certified endorser blocks and Peras boosted blocks
represent a longer-term research opportunity. In principle, the vote aggregation mechanisms
used for endorser block certification could potentially be leveraged for Peras boosting, creating
a unified voting infrastructure. However, such integration is likely undesirable for initial deploy-
ments due to the complexity it would introduce and the dependency it would create between
the two protocols. In the medium to long term, exploring these interactions could yield further
improvements to both throughput and finality properties.

4.3 Era and hard-fork coordination

As already identified in the impact analysis, Leios requires a new ledger era to accommodate the
modified block structure and validation rules. The timing of this transition must be carefully co-
ordinated with the broader Cardano hard-fork schedule and other planned protocol upgrades.

At the time of writing, the currently deployed era is Conway, with Dijkstra planned as the im-
mediate successor. Current plans for Dijkstra include nested transactions and potentially Peras
integration. Before that, an intra-era hard fork is planned for early 2026 to enable additional
features within the Conway era still.

A new era is always required when the allowed encoding of block bodies and transactions change.
As Dijkstra is the current staging era, it will also be the integration point for Leios-specific
format changes. Should development timelines turn out not to align with the inter-era hard-fork
schedule to Dijkstra, there are two options:

• Postpone Leios deployment until after Dijkstra, moving Leios block format changes into
the subsequent era Euler.

• Leios block format encoding specification and implementation remains in Dijkstra, but
ledger validation is always failing until an intra-era hard-fork enables it.
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While the first option appears cleaner, it could introduce substantial delays depending on the
community-agreed pace on new era definition and deployments. The second option on the
other hand requires definite understanding on the serialization format ahead of time, where any
further change would result in option one of targeting Euler, but with the added friction of
feature-flagging Leios functionality before its moved to Euler - the worst of both options.

Deploying both Peras and Leios within the same hard fork is technically possible but increases
deployment risk. Both protocols represent significant consensus changes that affect network
communication patterns, resource utilization, and operational procedures. The complexity of
coordinating these changes, validating their interactions, and managing the upgrade process
across the diverse Cardano ecosystem suggests that sequential deployment provides a more con-
servative and manageable approach. Both options above would allow for that via two subsequent
protocol versions, but also both in one hard-fork if the risk is deemed acceptable.

4.4 Interactions with Genesis

Ouroboros Genesis enables nodes to bootstrap safely from the genesis block with minimal trust
assumptions, completing the decentralization of Cardanos physical network infrastructure. Gen-
esis integration with Leios requires no changes to the existing Genesis State Machine, though
practical considerations on synchronization remain important.

Genesis compatibility directly follows from the protocol design. The Genesis protocol oper-
ates on ranking block headers for chain density calculations and bootstrapping decisions. Since
Leios preserves the existing ranking block sequence while only adding certificates of endorser
blocks, the fundamental Genesis mechanisms remain unchanged. No modifications to the Gene-
sis State Machine are expected, as it continues to evaluate the unchanged chain growth.

Chain synchronization in general becomes more complex under Leios due to the multi-layered
block structure. Syncing nodes must fetch both ranking blocks and their associated certified
endorser blocks to construct a complete view of the chain. A node that downloads only ranking
blocks cannot reconstruct the complete ledger state, as the actual transactions content resides
within closures of the endorser blocks referenced by certificates on the ranking blocks. The
LeiosFetch mini-protocol addresses this requirement through the MsgLeiosBlockRangeRequest
message type, enabling efficient batch fetching of complete block ranges during synchronization.
This allows nodes to request not only a range of ranking blocks but also all associated endorser
blocks and their transaction closures in coordinated requests. Parallel fetching from multiple
peers becomes critical for synchronization performance, as the data volume substantially exceeds
that of traditional Praos blocks.

![WARNING]

TODO: Chain synchronization / syncing node discussion could be moved to the
respective section in the architecture/changes chapter
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4.5 Impact on Mithril

While Mithril operates as a separate layer above the consensus protocol and does not directly
interact with Leios mechanisms, the integration requires consideration of several practical com-
patibility aspects.

The most prominent feature of Mithril is that it serves verifable snapshots of the cardano-node
databases. The additional data structures introduced by Leios (e.g. the EBStore) must be
incorporated into the snapshots that Mithril produces and delivers to its users. Beyond that,
Mithril needs to also extend its procedures for digesting and verifying the more complex chain
structure including endorser blocks and their certification status.

Mithril relies on a consistent view of the blockchain across all participating signers. Hence,
the client APIs used by Mithril signers may require updates depending on which interfaces
are utilized. While Mithril initially focused on digesting and signing the immutable database as
persisted on disk, the consideration of using LocalChainSync for signing block ranges introduces
potential interaction points with Leios induced changes to client interface.

In summary, Leios will not require fundamental changes to Mithrils architecture but requires
careful attention to data completeness and consistency checks in the snapshot generation and
verification processes.

5 Risks and mitigations

This chapter bridges the implementation plan with concrete technical design by examining se-
lected threats that directly inform architectural decisions and validation priorities. The focus is
on implementation-specific risks rather than general protocol threats, which are either mitigated
by design or othterwise covered in the threat model.

The threats examined here represent scenarios that could compromise the implementations abil-
ity to deliver Leios promised benefits while maintaining Praos security guarantees. Each threat
analysis motivates specific technical requirements, validation experiments, or design constraints
that shape the implementation outlined in subsequent chapters.

5.1 Key threats

The following threats have been selected for detailed analysis based on their potential to inform
critical implementation decisions. These represent attack vectors that emerged prominently dur-
ing research, have significant implications for system performance under adversarial conditions,
or require empirical validation through prototyping and testing.
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5.1.1 Data withholding

In a data withholding attack (ATK-LeiosDataWithholding, see also threat vectors #20, #21
and #22), the adversary deliberately prevents the diffusion of endorser block transaction closures
to disrupt certification and degrade network throughput. This attack exploits the fundamental
dependency between transaction availability and EB certification, targeting the gap between
optimistic and worst-case diffusion scenarios that underlies Leios security argument.

The attack operates by manipulating timing and availability of transaction data required for
EB validation. When an EB is announced via an RB header, voting committee members must
acquire and validate the complete transaction closure before casting votes. The adversary can
exploit this in several ways: withholding the EB body itself, selectively withholding individual
transactions, or strategically timing data release to exceed the Lvote deadline.

Direct threshold impact. The most direct form involves an adversarial block producer creat-
ing valid EBs but refusing to serve transaction closures when requested by voting nodes. Since
committee members cannot validate unavailable transactions, they cannot vote for certifica-
tion, effectively nullifying the EBs throughput contribution. More sophisticated variants involve
network-level manipulation where the adversary controls network relays to selectively prevent
transaction propagation to specific voting committee members.

Consider an adversary controlling 15% of stake attempting to prevent honest EBs from achieving
the 75% certification threshold. The adversary must withhold transaction data from enough
voting committee members to reduce available honest stake below 75%. Since the adversary
controls 15% stake directly, they need to prevent an additional 10% of honest stake from voting.
This demonstrates how modest adversarial stake combined with strategic network positioning
could significantly impact honest EB certification.

Attack on safety. While throughput degradation represents the obvious impact, the most
dangerous variant targets blockchain safety itself. The adversary can strategically delay trans-
action data release to create scenarios where EBs achieve certification but cannot be processed
by honest nodes within the required timeframe. Just before the voting deadline, they release
data to a subset of voting committee membersenough to achieve certification, but not to all
network participants. The resulting certificate gets included in a subsequent RB, but honest
block producers cannot acquire the certified EBs transaction closure within Ldiff.

By reducing the number of honest nodes that received the EB data in time for certification,
the adversary also impairs subsequent diffusion. With fewer nodes initially possessing the com-
plete transaction closure, propagation becomes slower and less reliable, potentially extending
diffusion times beyond protocol anticipation. This would represent a violation of Praos timing
assumptions. While missing the deadline occasionally does not break safety, short forks are
normal in Ouroboros, persistent violations can lead to longer forks and degraded chain quality.
In summary, the attack fundamentally challenges the security arguments assumption that the
difference between optimistic and worst-case diffusion remains bounded by Ldiff.
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Mitigation relies primarily on the protocol design ensuring that diffusion timing remains bounded
even under adversarial conditions. The certification mechanism provides defense against stake-
based withholding by requiring broad consensus before including EBs in the ledger. Network-
level attacks require sophisticated countermeasures including redundant peer connections, time-
outs that punish non-responsive nodes, and strategic committee selection considering network
topology.

The implementation must validate empirically that real-world network conditions support the
timing assumptions underlying the security argument through adversarial diffusion testing.

5.1.2 Protocol bursts

In a protocol burst attack (ATK-LeiosProtocolBurst, see also threat vector #23) the adver-
sary withholds a large number of EBs and/or their closures over a significant duration and then
releases them all at once. This will lead to a sustained maximal load on the honest network
for a smaller but still significant duration, a.k.a. a burst. The potential magnitude of that
burst will depend on various factors, including at least the adversarys portion of stake, but the
worst-case is more than a gigabyte of download. The cost to the victim is merely the work to
acquire the closures and to check the hashes of the received EB bodies and transaction bodies.
In particular, at most one of the EBs in the burst could extend the tip of a victim nodes current
selection, and so thats the only EB the victim would attempt to fully parse and validate. Even
without honest nodes needing to validate the vast majority of the burst, the sheer amount of
concentrated bandwidth utilization can be problematic.

Attack magnitude. Suppose the adversary controls 1/3rd stake and theyre issuing nominal
RBs. Recall that CIP-164 requires each honest node to attempt to acquire any EB that was
promptly announced within the last 12 hours. Even if its too late for the honest node itself to
vote on a tardy EB, the lack of global objective information implies the node must not assume
the EB cannot be certified by other nodes in the network. Thus, the honest node might later
need to switch to a fork that requires having this EB, and that switch ideally wouldnt be delayed
by waiting on that EBs arrival; the node should still acquire the EB as soon as it can. For this
attack, the adversary would announce each EB promptly (by diffusing the corresponding RB
headers on-time), but withhold the mini protocol messages that actually initiate the diffusion
of substantial Leios traffic throughout the honest network. Only after withholding every EBs
diffusion for 12 hours would they suddenly release them. In this scenario, which is not the worst-
case, the average would be approximately 2160 * (1/3) = 720 EBs, but there could be hundreds
more merely due to luck and multi-leader slots. There could be several thousand if the adversary
is also grinding, for example, and/or had closer to 50% stake, etc. If each of the attackers EBs
has the maximum size of 500 kilobytes of tx references and 12.5 megabytes of actual txs, which
dont even need to be valid, then thats an average of 720 * (12.5 + 0.5 megabytes) = 9.36
gigabytes the honest nodes will be eagerly diffusing throughout the network.

Resource contention. For however long it takes for the network to (carefully) diffuse 10
gigabytes, honest traffic might diffuse more poorly. CIP-164 requires that Praos traffic will be
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preferred over Leios traffic and that fresher Leios traffic will be preferred over stale Leios traffic.
That would prevent the burst from degrading contemporary honest traffic if the prioritization
could be perfect.

However, there are some infrastructural resources that cannot be prioritized perfectly nor in-
stantly reapportioned, including: CPU, memory, disk, disk bandwidth, and buffer utilization
on the nodes themselves but also along the Internet routers carrying packets between Cardano
peers. One non-obvious concern is that cloud providers often throttle users exhibiting large
bursts of bandwidth, so a node might perform fine outside of a protocol burst but struggle dis-
proportionately during one. A node in a data center might not struggle at all to diffuse the 10
gigabytes over the course of each 12 hours but be very slow to diffuse it in a single burst that
arrives every 12 hours.

Some of CPU and memory costs will scale in the number of txs rather than the number of EBs,
which can be a ratio of more than 10,000 to 1. If none of the 720 EBs overlap, then there
would be more than 7,200,000 unique txs on average that the honest nodes need to keep track
of during this burst. The identifying hashes of those txs alone is more than 230 megabytes. To
maximize the bookkeeping overhead, for example, the adversary might choose to diffuse all of
the EB bodies before diffusing any of their closures.

It remains an engineering challenge to achieve as much prioritization as possible, especially
during a protocol burst, without unnecessarily delaying the diffusion of any EB. That is, deter-
mining how to prevent this kind of protocol burst from increasing the latency of contemporary
Praos and Leios traffic among honest nodes.

The adversary is only able to issue EBs at an average rate in proportion to their resources (stake
and grinding). There will be some variance, but in general they can do smaller bursts more often
or larger bursts less often. However, the Praos security arguments parameters represent the
worst-case, so the largest burst fundamentally challenges the current Praos security argument
even if it can only happen rarely to whatever extent the prioritization schemes of CIP-164 are
imperfectly implemented.

5.2 Assumptions to validate early

Following the principle of early validation outlined in the implementation plan, several critical
assumptions underlying Leios security argument must be validated before we can commit to
full scale implementation and deployment. These assumptions represent potential failure points
where theoretical models may not match real-world performance.

• Worst case diffusion of EBs given certain honest stake is realistic. The security
argument assumes that even under adversarial conditions, EBs can be diffused to honest
nodes within bounded timeframes. This assumption must be validated under various
network topologies and attack scenarios to ensure the Ldiff parameter provides adequate
protection.
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• The Cardano network stack can realize freshest-first delivery sufficiently well.
Prioritizing Praos, over recent Leios , over stale Leios traffic is essential for mitigating
protocol burst attacks. Real-world validation must demonstrate that the network layer
can maintain this prioritization under load without significantly impacting Praos traffic.

• A real ledger can process orders of magnitude higher transaction loads as ex-
pected. Leios assumes that nodes can validate and apply large transaction sets within
tight timing constraints. This requires empirical validation of transaction validation
throughput, especially when combined with disk-based ledger storage and concurrent pro-
cessing demands.

The prototyping and adversarial testing phase of the implementation plan is specifically designed
to validate these assumptions through controlled experiments. Only with such validation we can
confidently design and implement the components that realize a Leios consensus.

6 Technical design

[!CAUTION]

FIXME: The next few sections are basically the relevant parts of the impact analysis
and ought to expanded with anything concrete implementation designs.

When transferring things from impact analysis, the REQ- requirements are as well
as the NEW-.. and UPD-.. references were kept. Not sure if we need all of them
to references between concepts and designs.

[!WARNING]

TODO: How to structure the changes best? Group them by layer/component or
responsibility?

Behavior-based sketch: - Transaction submission and caching - EB production -
EB diffusion - EB storage - Voting committee selection - Key generation - Key
registration - Key rotation - Vote production - Vote diffusion - Certification - Block
production: Including certificates in blocks - Chain validation: Verifying certificates
in blocks - Staging area interactions?

See also this mind map of changes as created by @nfrisby:

mindmap
root((Leios tasks, core devs))

((Ledger))
Serialization

Certs in RB bodies<br>- akin to Peras
Cert codecs/CDDL

New protocol parameters
New pool voting keys<br>- akin to Peras
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Cert validation
New LocalStateQuery queries?
Tune EB limits

((Consensus---easier))
Serialization

New fields in RB header
EB codecs/CDDL
Vote codecs/CDDL

Storage
EBs - imm and vol
Txs of EBs - imm and vol
Votes - only vol
Tx cache

Vote validation
Mempool

Increase size
Slurp from EBs

New Tracer events
New LocalStateQuery queries?
Add included EBs to NodeToClient ChainSync

((Consensus---harder))
Prioritize Praos threads
Vote decision logic
Genesis State Machine transition predicates

((Network))
Prioritize Praos traffic
Prioritize Praos threads

((Network&Consensus))
New mini protocols

Message codecs/CDDL
Tune size and time limits
Tune pipelining depth

Fetch decision logic
Caught up
Bulk syncing

Freshest first delivery
either: conservative pipelining depths
and/or else: server-side reordering

((Node))
New config data
Feature flags for dev phases
New CLI queries?
New pool voting keys<br>- akin to Peras
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6.1 Architecture

While being a significant change to the consensus protocol, Leios does not require fundamental
changes to the overall architecture of the cardano-node. Several new components will be needed
for the new responsibilities related to producing and relaying Endorser Blocks (EBs) and voting
on them, as well as changes to existing components to support higher throughput and freshest-
first-delivery. The following diagram illustrates the key components of a relay node where new
and updated components are marked in purple:

[!WARNING]

TODO: Should consider adding Leios prefixes to VoteStore (to not confuse with
PerasVoteDB), i.e. LeiosVoteDB?

Outbound mini-protocols

Protocols run as an Initiator

Group

Relay

Outbound inbound components and no block forging.
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Gets snapshot
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Schedules fetch
requests
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Registers follower,
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instructions
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Requests blocks
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transctions

Requests Leios data
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Schedules fetch
requests
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Stores votes
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Adds txs

Gets block
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EBs
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Validates
transactions using
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Peer selection
Establishes and manages outbound peer
connections; a.k.a outbound governor.

Component

Chain DB
Stores immutable, volatile and ledger
state, but also runs chain selection.

Component

Connection manager
Pools connections such that they can be re-used for

protocol initiation by running handshake protocol

Component

Block fetching
Fetches blocks continuously by scheduling fetch
requests across multiple N2N block fetch clients.

Component

Peer sharing servers
Serves a random subset of known peers.

Component

Tx submission servers
Request new transactions and fetches

missing ones.

Component

Chain sync servers
Serves block headers of the tentative chain statefully
through RollForward and RollBackward instructions.

Component

Upstream Node
Isolated role of a Cardano node being an

upstream peer.

App

Tx submission clients
Serves transactions by keeping state for each peer
and delivers indexed txs from a mempool snapshot.

Component

Ledger
Validates blocks & transactions and

evolves a given ledger state.

Component

Chain sync clients
Clients that share state to find chain

candidates by following the chain of peers

Component

Server
Runs inbound governor and accept loop(s)
to respond to protocol initiation requests.

Component

Downstream Node
Isolated role of a Cardano node being a

downstream peer.

App

Peer sharing clients
Can ask a peer for a sample of known

peers.

Component

Block Producer
Connects to the cardano network, accepts

transactions and produces blocks.

App

Block fetch servers
Serves block of the current chain.

Component

Block fetch clients
Clients that fetch blocks as determined

by the block fetching decision logic.

Component

Mempool
Keeps valid transactions up to some capacity. A sync
thread will re-validate transactions on ledger state

changes.

Component

Mux
Multiplexes mini-protocols over one bearer in

Initiator, Responder or InitiatorAndResponder mode.

Component

[!WARNING]
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TODO: Explain why focus on relay node (upstream/downstream relationship);
briefly mention block producer node differences; Add similar diagram for block
producer? block and vote production not shown in relay diagram

6.2 Consensus

[!WARNING]

TODO: Mostly content directly taken from impact analysis. Expand on motivation
and concreteness of changes.

CIP-0164 implies functional requirements for the node to issue EBs alongside RBs, vote for EBs
according to the rules from the CIP, include certificates when enough votes are seen, diffuse EBs
and votes through the network layer, and retain EB closures indefinitely when certified. The
Consensus layer is responsible for driving these operations and coordinating with the Network
layer (which implements the actual mini-protocols) to ensure proper diffusion.

6.2.1 Block production

The existing block production thread must be updated to generate an EB at the same time it
generates an RB (UPD-LeiosAwareBlockProductionThread). In particular, the hash of
the EB is a field in the RB header, and so the RB header can only be decided after the EB
is decided, and that can only be after the RB payload is decided. Moreover, the RB payload
is either a certificate or transactions, and that must also be decided by this thread, making it
intertwined enough to justify doing it in a single thread.

• REQ-IssueLeiosBlocks The node must issue an EB alongside each RB it issues, unless
that EB would be empty.

• REQ-IncludeLeiosCertificates The node must include a certificate in each RB it issues
if it has seen enough votes supporting the EB announced by the preceding RB. (TODO
excluding empty or very nearly empty EBs?)

The Mempool capacity should be increased (UPD-LeiosBiggerMempool) to hold enough
valid transactions for the block producer to issue a full EB alongside a full RB. The Mempool
capacity should at least be twice the capacity of an EB, so that the stake pool issuing a CertRB
for a full EB would still be able to issue a full EB alongside that CertRB (TxRBs have less trans-
action capacity than the EB certified by a CertRB). In general, SPOs are indirectly incentivized
to maximize the size of the EB, just like TxRBsso that more fees are included in the epochs
reward calculation.
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6.2.2 Vote production and storage

A new thread dedicated to Leios vote production (NEW-LeiosVoteProductionThread) will
wake up when the closure of an EB is newly available. If the voting rules would require the
stake pool to vote (now or soon) for this EB if its valid, then this thread will begin validating it.
Note if multiple closures arrive simultaneously, at most one of them could be eligible for a vote,
since the voting rules require the EB to be announced by the tip of the nodes current selection.
If the validation succeeds while the voting rules still require the stake pool to vote for this EB
(TODO even if it has since switched its selection?), the thread will issue that vote.

• REQ-IssueLeiosVotes The node must vote for EBs exactly according to the rules from
the CIP.

A new storage component (NEW-LeiosVoteStorage) will store all votes received by a node,
up to some conservative age (eg ten minutes). As votes arrive, they will be grouped according
to the RB they support. When enough votes have arrived for some RB, the certificate can be
generated immediately, which can avoid delaying the potential subsequent issuance of a CertRB
by this node. A vote for the EB announced by an RB is irrelevant once all nodes will never switch
their selection away from some block that is not older than that RB. This condition is very likely
to be satisfied relatively soon on Cardano mainnet, unless its Praos growth is being disrupted.
Therefore, the vote storage component can simply discard votes above some conservative age,
which determines a stochastic upper bound the heap size of all sufficiently-young votes.

• REQ-DiffuseLeiosVotes The node must diffuse votes (via the Network layers mini-
protocols) at least until theyre old enough that there remains only a negligible probability
they could still enable an RB that was issued on-time to include a certificate for the EB
they support.

6.2.3 Endorser block storage

Unlike votes, a node should retain the closures of older EBs (NEW-LeiosEbStore), because
Praos allows for occasional deep forks, the most extreme of which could require the closure of
an EB that was announced by the youngest block in the Praos Common Prefix. On Cardano
mainnet, that RB is usually 12 hours old, but could be up to 36 hours old before CIP-0135
Disaster Recovery Plan is triggered. Thus, EB closures are not only large but also have a
prohibitively long lifetime even when theyre ultimately not immortalized by the historical chain.
This component therefore stores EBs on disk just as the ChainDB already does for RBs. The
volatile and immutable dichotomy can even be managed the same way it is for RBs.

• REQ-DiffuseLeiosBlocks The node must acquire and diffuse EBs and their closures
(via the Network layers new mini-protocols, see below).

• REQ-ArchiveLeiosBlocks The node must retain each EBs closure indefinitely when the
settled Praos chain certifies it.
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Each CertRB must be buffered in a staging area (NEW-LeiosCertRbStagingArea) until
its closure arrives, since the VolDB only contains RBs that are ready for ChainSel. (Note
that a CertRBs closure will usually have arrived before it did.) (TODO Any disadvantages?
For example, would it be beneficial to detect an invalid certificate before the closure arrives?)
(TODO a more surgical alternative: the VolDB index could be aware of which EB closures
have arrived, and the path-finding algorithm could incorporate that information. However,
this means each EB arrival may need to re-trigger ChainSel.) The BlockFetch client (UPD-
LeiosRbBlockFetchClient) must only directly insert a CertRB into the VolDB if its closure
has already arrived (which should be common due to L_diff). Otherwise, the CertRB must be
deposited in the CertRB staging area instead.

The LedgerDB (UPD-LeiosLedgerDb) will need to retrieve the certified EBs closure from
the LeiosEbStore when applying a CertRB. Due to NEW-LeiosCertRbStagingArea, it should be
impossible for that retrieval to fail.

6.2.4 Transaction cache

A new storage component (NEW-LeiosTxCache) will store all transactions received when
diffusing EBs as well as all transactions that successfully enter the Mempool, up to some conser-
vative age (eg one hour). The fundamental reason that EBs refer to transactions by hash instead
of including them directly is that, for honest EBs, the node will likely have already received most
of the referenced transactions when they recently diffused amongst the Mempools. Thats not
guaranteed, though, so the node must be able to fetch whichever transactions are missing, but
in the absence of an attack that ought to be minimal.

The Mempool is the natural inspiration for this optimization, but its inappropriate as the ac-
tual cache for two reasons: it has a relatively small, multidimensional capacity and its eviction
policy is determined by the distinct needs of block production. This new component instead has
a greater, unidimensional capacity and a simple Least Recently Used eviction policy. Simple
index maintained as a pair of priority queues (index and age) in manually managed fixed size
bytearrays, backed by a double-buffered mmapped file for the transactions serializations. Those
implementation choices prevent the sheer number of transactions from increasing GC pressure
(adversarial load might lead to a ballpark number of 131000 transactions per hour), and persis-
tences only benefit here would be to slightly increase parallelism/simplify synchronization, since
persistence would let readers release the lock before finishing their search.

Note: if all possibly-relevant EBs needed to fit in the LeiosTxCache, its worst case size would
approach 500 million transactions. Even the index would be tens of gigabytes. This is excessive,
since almost all honest traffic will be younger than an hourassuming FFD is actually enforced.

6.2.5 Resource management

The protocol requires resource-management to prioritize Praos traffic and computation over all
Leios traffic, and prioritize younger EBs over older ones:
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• REQ-PrioritizePraosOverLeios The node must prioritize Praos traffic and computa-
tion over all Leios traffic and computation so that the diffusion and adoption of any RB
is only negligibly slower.

• REQ-PrioritizeFreshOverStaleLeios The node must prioritize Leios traffic and com-
putation for younger EBs over older EBs (a.k.a. freshest first delivery).

These requirements can be summarized as: Praos > fresh Leios > stale Leios. The Consensus
layer implements the scheduling logic to satisfy these requirements, while the Network layer (see
below) implements the protocol mechanisms. Looking forward, Peras should also be prioritized
over Leios, since a single Peras failure is more disruptive to Praos than a single Leios failure.

The fundamental idea behind Leios has always been that the Praos protocol is inherently and
necessarily bursty. Leios should be able to freely utilize the nodes resources whenever Praos is
not utilizing them, which directly motivates REQ-PrioritizePraosOverLeios. It is ultimately
impossible to achieve such time-multiplexing perfectly, due to the various latencies and hystereses
inherent to the commodity infrastructure (non real-time operating systems, public Internet, etc).
On the other hand, it is also ultimately unnecessary to time-multiplex Praos and Leios perfectly,
but which degree of imperfection is tolerable?

[!WARNING]

TODO: Move description of protocol burst attack vector into dedicated section
(above)

One particularly relevant attack vector is the protocol burst attack (ATK-LeiosProtocolBurst).
In a protocol burst attack the adversary withholds a large number of EBs and/or their closures
over a significant duration and then releases them all at once. This will lead to a sustained
maximal load on the honest network for a smaller but still significant duration, a.k.a. a burst.
The potential magnitude of that burst will depend on various factors, including at least the
adversarys portion of stake, but the worst-case is more than a gigabyte of download. The cost
to the victim is merely the work to acquire the closures and to check the hashes of the received
EB bodies and transaction bodies. In particular, at most one of the EBs in the burst could
extend the tip of a victim nodes current selection, and so thats the only EB the victim would
attempt to fully parse and validate.

Contention for the following primary node resources might unacceptably degrade the time-
multiplexing via contention between Praos and Leios:

• RSK-LeiosPraosContentionNetworkBandwidth This is not anticipated to be a chal-
lenge, because time-multiplexing the bandwidth is relatively easy. In fact, Leios traffic
while Praos is idle could potentially even prevent the TCP Receive Window from contract-
ing, thus avoiding a slow start when Praos traffic resumes.

• RSK-LeiosPraosContentionCPU This is not anticipated to be a challenge, because
todays Praos node does not exhibit major CPU load on multi-core machines. Leios might
have more power-to-weight ratio for parallelizing its most expensive task (EB validation),
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but that parallelization isnt yet obviously necessary. Thus, even Praos and Leios together
do not obviously require careful orchestration on a machine with several cores.

• RSK-LeiosPraosContentionGC It is not obvious how to separate Praos and Leios into
separate OS processes, since the ledger state is expensive to maintain and both protocols
frequently read and update it. When the Praos and Leios components both run within the
same operating system process, they share a single instance of the GHC Runtime System
(RTS), including eg thread scheduling and heap allocation. The sharing of the heap in
particular could result in contention, especially during an ATK-LeiosProtocolBurst (at
least the transaction cache will be doing tens of thousands of allocations, in the worst-
case). Even if the thread scheduler could perfectly avoid delaying Praos threads, Leios
work could still disrupt Praos work, because some RTS components exhibit hysteresis,
including the heap.

• RSK-LeiosPraosContentionDiskBandwidth Praos and Leios components might con-
tend for disk bandwidth. In particular, during a worst-case ATK-LeiosProtocolBurst, the
Leios components would be writing more than a gigabyte to disk as quickly as the net-
work is able to acquire the bytes (from multiple peers in parallel). Praoss disk bandwidth
utilization depends on the leader schedule, fork depth, etc, as well as whether the node
is using a non-memory backend for ledger storage (aka UTxO HD or Ledger HD). For
non-memory backends, the ledgers disk bandwidth varies drastically depending on the de-
tails of the transactions being validated and/or applied: a few bytes of transaction could
require thousands of bytes of disk reads/writes.

– Note that the fundamental goals of Leios will imply a significant increase in the size
of the UTxO. In response, SPOs might prefer enabling UTxO HD/Ledger HD over
buying more RAM.

Both GC pressure and disk bandwidth are notoriously difficult to model and so were not
amenable to the simulations that drove the first version of the CIP. Prototypes rather than
simulations will be necessary to assess these risks with high confidence.

The same risks can also be viewed from a different perspective, which is more actionable in
terms of planning prototypes/experiments/etc: per major component of the node.

• RSK-LeiosLedgerOverheadLatency: Parsing a transaction, checking it for validity,
and updating the ledger state accordingly all utilize CPU and heap (and also disk band-
width with UTxO/Ledger HD). Frequent bursts of that resource consumption proportional
to 15000% of a full Praos block might disrupt the caught-up node in heretofore unnoticed
ways. Only syncing nodes have processed so many/much transactions in a short dura-
tion, and latency has never been a fundamental priority for a syncing node. Disruption of
the RTS is the main concern here, since there is plenty of CPU availablethe ledger is not
internally parallelized, and only ChainSel and the Mempool could invoke it simultaneously.

• RSK-LeiosNetworkingOverheadLatency: Same as RSK-LeiosLedgerOverheadLatency,
but for the Diffusion Layer components handling frequent 15000% bursts in a caught-up
node.
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• RSK-LeiosMempoolOverheadLatency: Same as RSK-LeiosLedgerOverheadLatency,
but for the Mempool frequently revalidating 15000% load in a caught-up node during
congestion (ie 30000% the capacity of a Praos block, since the Leios Mempool capacity is
now two EBs instead of two Praos blocks).

6.2.6 Implementation notes

For the first version of the LedgerDB, it need not explicitly store EBs ledger state; the CertRBs
result ledger state will reflect the EBs contents. A second version could thunk the EBs reap-
plication alongside the announcing RB, which would only avoid reapplication of one EB on a
chain switch (might be worth it for supporting tiebreakers?). The first version of LedgerDB
can simply reapply the EBs transactions before tick-then-applying a CertRB. A second version
should pass the EBs transactions to the ledger function (or instead the thunk of reapplying the
EB)?

The first version of the Mempool can be naive, with the block production thread handling
everything. A second version can try to pre-compute in order to avoid delays (ie discarding the
certified EBs chunk of transactions) when issuing a CertRB and its announced EB.

The first version of LeiosTxCache should reliably cache all relevant transactions that are less
than an hour or so oldthat age spans 180 active slots on average. A transaction is born when
its oldest containing EB was announced or when it entered the Mempool (if it hasnt yet been
observed in an EB). (Note that that means some txs age in the LeiosTxCache can increase when
an older EB that contains it arrives.) Simple index maintained as a pair of priority queues (index
and age) in manually managed fixed size bytearrays, backed by a double-buffered mmapped file
for the transactions serializations. Those implementation choices prevent the sheer number of
transactions from increasing GC pressure (adversarial load might lead to a ballpark number of
131000 transactions per hour), and persistences only benefit here would be to slightly increase
parallelism/simplify synchronization, since persistence would let readers release the lock before
finishing their search.

The first version of LeiosFetch client can assemble the EB closure entirely on disk, one transaction
at a time. A second version might want to batch the writes in a pinned mutable ByteArray
and use withMutableByteArrayContents and hPutBuf to flush each batch. Again, the possible
benefit of this low-level shape would be to avoid useless GC pressure. The first version can wait
for all transactions before starting to validate any. A later version could eagerly validate as the
prefix arrivescomparable to eliminating one hop in the topology, in the worst-case scenario.

The first version of LeiosFetch server simply pulls serialized transactions from the LeiosEbStore,
and only sends notifications to peers that are already expecting them when the noteworthy event
happens. If notification requests and responses are decoupled in a separate mini protocol or else
requests can be reordered (TODO or every other request supports a MsgOutOfOrderNotifica-
tionX loopback alternative?), then itll be trivial for the client to always maintain a significant
buffer of outstanding notification requests.
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Even the first version of LeiosFetch decision logic should consider EBs that are certified on peers
ChainSync candidates as available for request, as if that peer had sent both MsgLeiosBlockOffer
and MsgLeiosBlockTxsOffer. A MsgRollForward implies the peer has selected the block, and
the peer couldnt do that for a CertRB if it didnt already have its closure.

The first version of LeiosEbStore can just be two bog standard key-value stores, one for im-
mutable and one for volatile. A second version maybe instead integrates certified EBs into the
existing ImmDB? That integration seems like a good fit. It has other benefits (eg saves a disk
roundtrip and exhibits linear disk reads for driver prefetching/etc), but those seem unimportant
so far.

6.3 Network

[!WARNING]

TODO: Mostly content directly taken from impact analysis. Expand on motivation
and concreteness of changes.

The Network layer implements the mini-protocols that enable the Consensus layer to satisfy its
diffusion requirements (REQ-DiffuseLeiosBlocks, REQ-DiffuseLeiosVotes) and prioritiza-
tion requirements (REQ-PrioritizePraosOverLeios, REQ-PrioritizeFreshOverStaleLeios)
defined in the Consensus section above. While Consensus drives the scheduling logic for when
to diffuse blocks and votes, Network provides the protocol mechanisms to actually transmit
them over the peer-to-peer network.

Similar resource contention risks apply to the Network layer, including network bandwidth
contention between Praos and Leios, networking overhead latency, and contention between fresh
and stale Leios traffic.

6.3.1 New mini-protocols

The node must include new mini-protocols (NEW-LeiosMiniProtocols) to diffuse EB an-
nouncements, EBs themselves, EBs transactions, and votes for EBs. These protocols enable
the Consensus layer to satisfy REQ-DiffuseLeiosBlocks and REQ-DiffuseLeiosVotes. The
Leios mini-protocols will require new fetch decision logic (NEW-LeiosFetchDecisionLogic),
since the node should not necessarily simply download every such object from every peer that
offers it. Such fetch decision logic is also required for TxSubmission and for Peras votes; the
Leios logic will likely be similar but not equivalent.

6.3.2 Traffic prioritization

The existing multiplexer is intentionally fair amongst the different mini-protocols. In the cur-
rent CIP, the Praos traffic and Leios traffic are carried by different mini-protocols. Therefore,
introducing a simple bias in the multiplexer (NEW-LeiosPraosMuxBias) to strongly (TODO
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fully?) prefer sending messages from Praos mini protocols over messages from Leios mini pro-
tocols would directly enable the Consensus layer to satisfy REQ-PrioritizePraosOverLeios
and mitigate RSK-LeiosPraosContentionNetworkBandwidth. This multiplexer bias is
the primary mechanism to ensure that Praos traffic and computation are prioritized over Leios,
so that the diffusion and adoption of any RB is only negligibly slower.

It is not yet clear how best to mitigate RSK-LeiosLeiosContentionNetworkBandwidth or,
more generally, how to enable the Consensus layer to satisfy REQ-PrioritizeFreshOverStaleLeios
(aka freshest first delivery) in the Network Layer. One notable option is to rotate the two
proposed Leios mini-protocols into a less natural pair: one would send all requests and
only requests and the other would send all replies and only replies. In that way, the server
canwhen it has received multiple outstanding requests, which seems likelying during ATK-
LeiosProtocolBurstreply to requests in a different order than the client sent them, which is
inevitable since the client will commonly request an EB as soon its offered, which means the
client will request maximally fresh EBs after having requesting less fresh EBs. If the client
were to avoid sending any request that requires a massive atomic reply (eg a MsgLeiosBlock-
TxsRequest for 10 megabytes), then the server can prioritize effectively even without needing to
implement any kind of preemption mechanism. This option can be formulated in the existing
mini protocol infrastructure, but another option would be to instead enrich the mini-protocol
infrastructure to somehow directly allow for server-side reordering. Whether any of this is
needed requires further investigation through prototypes (EXP-LeiosDiffusionOnly).

6.4 Ledger

[!WARNING]

TODO: Mostly content directly taken from impact analysis. Expand on motivation
and concreteness of changes.

The Ledger is responsible for validating Blocks and represents the actual semantics of Cardano
transactions. CIP-164 sketches a protocol design that does not change the semantics of Cardano
transactions, does not propose any changes to the transaction structure and also not requires
changes to reward calculation. The ledger component has three main entry points:

1. Validating individual transactions via LEDGER
2. Validating entire block bodies via BBODY
3. Updating rewards and other ledger state (primarily across epochs) via TICK

The first will not need to change functionally, while the latter two will need to be updated
to handle the new block structure (ranking blocks not including transactions directly) and to
enable the determination of a voting committee for certificate verification. Any change to the
ledger demands a hard-fork and a change in formats or functionality are collected into ledger
eras. The changes proposed by CIP-164 will need to go into new ledger era:
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• REQ-LedgerNewEra The ledger must be prepared with a new era that includes all
changes required by CIP-164.

For the remainder of this document, lets assume the changes will go into the Euler era, where
Conway is currently the latest and Dijkstra is in preparation at the time of writing.

6.4.1 Transaction validation levels

Validating individual transactions is currently done either via applyTx or reapplyTx functions.
This corresponds to two levels of validation:

• applyTx fully validates a transaction, including existence of inputs, checking balances,
cryptographic hashes, signatures, evaluation of plutus scripts, etc.

• reapplyTx only check whether a transaction applies to a ledger state. This does not include
expensive checks like script evaluation (a.k.a phase-2 validation) or signature verification.

Where possible, reapplyTx is used when we know that the transaction has been fully validated
before. For example when refreshing the mempool after adopting a new block. With Leios, a
third level of validation is introduced:

• REQ-LedgerTxNoValidation The ledger should provide a way to update the ledger
state by just applying a transaction without validation.

This third way of updating a ledger state would be used when we have a valid certificate about
endorsed transactions in a ranking block. To avoid delaying diffusion of ranking blocks, we do
want to do the minimal work necessary once an EB is certified and ease the protocol security
argument with:

• REQ-LedgerCheapReapply Updating the ledger state without validation must be sig-
nificantly cheaper than even reapplying a transaction is today.

Note that this already anticipates that the new, third level notValidateTx will be even cheaper
than reapplyTx. Existing benchmarks indicate that reapplyTx is already at least one order of
magnitude cheaper than applyTx for transactions.

6.4.2 New block structure

In Praos, all transactions to be verified and applied to the ledger state are included directly
in the block body. In Leios, ranking blocks (RB) may not include transactions directly, but
instead certificate and reference to an endorsement block (EB) that further references the actual
transactions. This gives rise to the following requirements:

• REQ-LedgerResolvedBlockValidation When validating a ranking block body, the
ledger must be provided with all endorsed transactions resolved.
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• REQ-LedgerUntickedEBValidation When validating a ranking block body, the ledger
must validate endorsed transactions against the ledger state before updating it with the
new ranking block.

• REQ-LedgerTxValidationUnchanged The actual transaction validation logic should
remain unchanged, i.e., the ledger must validate each transaction as it does today.

The endorsement block itself does not contain any additional information besides a list of trans-
action identifiers (hashes of the full transaction bytes). Hence, the list of transactions is sufficient
to reconstruct the EB body and verify the certificate contained in the RB. The actual transac-
tions to be applied to the ledger state must be provided by the caller of the ledger interface,
typically the storage layer.

6.4.3 Certificate verification

In order to verify certificates contained in ranking blocks, the ledger must be aware of the voting
committee and able to access their public keys. As defined by REQ-RegisterBLSKeys, SPOs
must be able to register their BLS keys to become part of the voting committee. The ledger will
need to be able to keep track of the registered keys and use them to do certificate verification.
Besides verifying certificates, individual votes must also be verifiable by other components (e.g. to
avoid diffusing invalid votes).

• REQ-LedgerStateVotingCommittee The Leios voting committee must be part of the
ledger state, updated on epoch boundaries and queryable through existing interfaces.

Being part of the ledger state, the voting committee will be stored in ledger snapshots and hence
on disk in course of Ledger-HD. Depending on how exactly keys will be registered, the ledger
might need to be able to access block headers in order to read the BLS public keys from the
operational certificate. As this is not the case today (only block bodies are processed by the
ledger), this results in requirement:

• REQ-LedgerBlockHeaderAccess The ledger must be able to access block headers.

[!NOTE] This is a very generic requirement and will likely change depending on how
the consensus/ledger interface for block validation is realized. It might be desirable
to limit the ledgers access to block headers and only provide (a means to extract)
relevant information. That is, the BLS public keys to be tracked and the voting
committee to be selected from.

The voting committee consists of persistent and non-persistent voters. The persistent voters are
to be selected at epoch boundaries using a Fait Accompli sortition scheme. Hence:

• REQ-LedgerCommitteeSelection The ledger must select persistent voters in the voting
committee at epoch boundaries using the Fait Accompli sortition scheme.

Finally, block validation of the ledger can use the voting committee state to verify certificates
contained in ranking blocks:

32

https://github.com/cardano-scaling/CIPs/blob/leios/CIP-0164/README.md#votes-and-certificates


• REQ-LedgerCertificateVerification The ledger must verify certificates contained in
ranking blocks using the voting committee state.

6.4.4 New protocol parameters

CIP-164 introduces several new protocol parameters that may be updated via on-chain gov-
ernance. The ledger component is responsible for storing, providing access and updating any
protocol parameters. Unless some of the new parameters will be deemed constant (a.k.a globals
to the ledger), the following requirements must be satisfied for all new parameters:

• REQ-LedgerProtocolParameterAccess The ledger must provide access to all new
protocol parameters via existing interfaces.

• REQ-LedgerProtocolParameterUpdate The ledger must be able to update all new
protocol parameters via on-chain governance.

Concretely, this means defining the PParams and PParamsUpdate types for the Euler era to
include the new parameters, as well as providing access via the EulerPParams and other type
classes.

6.4.5 Serialization

Traditionally, the ledger component defines the serialization format of blocks and transactions.
CIP-164 introduces three new types that need to be serialized and deserialized:

[!WARNING]

TODO: Serialization of votes a consensus component responsibility?

• REQ-LedgerSerializationRB The ranking block body contents must be deterministi-
cally de-/serializable from/to bytes using CBOR encoding.

• REQ-LedgerSerializationEB The endorsement block structure must be deterministi-
cally de-/serializable from/to bytes using CBOR encoding.

• REQ-LedgerSerializationVote The vote structure must be deterministically de-
/serializable from/to bytes using CBOR encoding.

Corresponding types with instances of EncCBOR and DecCBOR must be provided in the ledger
component. The cardano-ledger package is a dependency to most of the Haskell codebase,
hence these new types can be used in most other components.
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6.5 Cryptography

[!WARNING]

TODO: Mostly content directly taken from impact analysis. Expand on motivation
and concreteness of changes.

The security of the votes cast and the certificates that Leios uses to accept EB blocks depends on
the usage of the pairing-based BLS12-381 signature scheme (BLS). This scheme is useful, as it
allows for aggregation of public keys and signatures, allowing a big group to signal their approval
with one compact artifact. Besides Leios, it is also likely that Peras will use this scheme.

This section derives requirements for adding BLS signatures to cardano-base and sketches
changes to satisfy them. The scope is limited to cryptographic primitives and their integration
into existing classes; vote construction/logic is out of scope. This work should align with this
IETF draft.

Note that with the implementation of CIP-0381 cardano-base already contains basic
utility functions needed to create these bindings; the work below is thus expanding
on that. The impact of the below requirements thus only extends to this module
and probably this outward facing class.

6.5.1 Core functionality

The following functional requirements define the core BLS signature functionality needed:

• REQ-BlsTypes Introduce opaque types for SecretKey, PublicKey, Signature, and
AggSignature (if needed by consensus).

• REQ-BlsKeyGenSecure Provide secure key generation with strong randomness require-
ments, resistance to side-channel leakage.

• REQ-BlsVariantAbstraction Support both BLS variantssmall public key and small
signaturebehind a single abstraction. Public APIs are variant-agnostic.

• REQ-BlsPoP Proof-of-Possession creation and verification to mitigate rogue-key attacks.
• REQ-BlsSkToPk Deterministic sk pk derivation for the chosen variant.
• REQ-BlsSignVerify Signature generation and verification APIs, variant-agnostic and

domain-separated (DST supplied by caller). Besides the DST, the interface should also
implement a per message augmentation.

• REQ-BlsAggregateSignatures Aggregate a list of public keys and signatures into one.
• REQ-BlsBatchVerify Batch verification API for efficient verification of many (pk, msg,

sig) messages.
• REQ-BlsDSIGNIntegration Provide a DSIGN instance so consensus can use BLS via

the existing DSIGN class, including aggregation-capable helpers where appropriate.
• REQ-BlsSerialisation Deterministic serialisation: ToCBOR/FromCBOR and raw-bytes for

keys/signatures; strict length/subgroup/infinity checks; canonical compressed encodings
as per the Zcash standard for BLS points.
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• REQ-BlsConformanceVectors Add conformance tests using test vectors from the initial
Rust implementation to ensure cross-impl compatibility.

6.5.2 Performance and quality

[!WARNING]

TODO: Move to performance or testing sections?

The following non-functional requirements ensure the implementation meets performance and
quality standards:

• REQ-BlsPerfBenchmarks Benchmark single-verify, aggregate-verify, and batch-verify;
report the impact of batching vs individual verification.

• REQ-BlsRustParity Compare performance against the Rust implementation; document
gaps and ensure functional parity on vectors.

• REQ-BlsDeterminismPortability Deterministic results across platforms/architectures;
outputs independent of CPU feature detection.

• REQ-BlsDocumentation Document the outward facing API in cardano-base and pro-
vide example usages. Additionally add a section on dos and donts with regards to security
of this scheme outside the context of Leios.

6.5.3 Implementation notes

Note that the PoP checks probably are done at the certificate level, and that the above-described
API should not be responsible for this. The current code on BLS12-381 already abstracts over
both curves G1/G2, we should maintain this. The BLST package also exposes fast verification
over many messages and signatures + public keys by doing a combined pairing check. This
might be helpful, though its currently unclear if we can use this speedup. It might be the case,
since we have linear Leios, that this is never needed.

6.6 Performance & Tracing (P&T)

[!WARNING]

TODO: Mostly content directly taken from impact analysis. Expand on motivation
and concreteness of changes. We could also consider merging performance engineer-
ing aspects into respective layers/components. This also feels a bit ouf of touch
with the implementation plan; to be integrated better for a more holistic quality
and performance strategy. See also https://github.com/input-output-hk/ouroboros-
leios/pull/596 for more notes on performance & tracing.

This outlines Leios impact on the nodes tracing system and on dedicated Leios performance
testing and benchmarks.
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6.6.1 Tracing

Leios will require a whole new set of observables for a Cardano node, which do not exist for
Praos. These observables will need to be exposed - just as the existing ones - via trace evidence
and metrics. A specification document will need to be created and maintained, detailing the
semantics of those new observables. Some might be specific to the Haskell implementation, some
might be generic to any Leios implementation. The work from R&D and the insights gained
from Leios simulations will be the input to that document.

During Leios implementation process, P&T will need to oversee that traces are emitted at
appropriate source locations wrt. their semantics, as well as properly serialized or captured in
a metric in cardano-node itself. P&T analysis tooling - mostly the locli package - will need
significant adjustment to parse, process and extract meaningful performance data from raw trace
evidence.

6.6.2 Performance testing

For a systematic approach to benchmarking, all Leios modes of operation and their re-
spective configurations will need to be captured in P&Ts benchmark profile library - the
cardano-profile package. P&Ts nix & Nomad based automations need to be adjusted to
deploy and execute Leios profiles as benchmarks from that library.

On a conceptual level, the challenge to benchmarking Leios - being built for high throughput -
is putting it under a stable saturation workload for an extended period of time. By stable, Im
referring to maintaining equal submission pressure over the benchmarks entire duration. These
workloads need to be synthetic in nature, as only that way one can reliably and consistently
stress specific aspects of the implementation. For Praos benchmarks, theyre created dynamically
by tx-generator. New workloads will need to be implemented, or derived from the existing
ones.

Considering all the above, the most promising approach would be finding a model, or symmet-
rically scaled-down Leios, which is able to reliably predict performance characteristics of the
non-scaled down version - exactly as P&Ts benchmarking cluster hardware models a larger envi-
ronment like mainnet at scale and is able to predict performance impact based on observations
from the cluster. By Leios version above, Im of course referring to the exact same Leios imple-
mentation whose performance characteristics are being measured. Model or scaled versions will
have to be realized via configuration or protocol parameters exclusively.

Any Leios option or protocol parameter that allows for sensibly scaling the implementation
has to be identified. This will allow for correlating observed performance impact or trade-
offs to e.g. linearly scaling some parameter. Comparative benchmarking will require a clearly
structured process of integrating new features or changes into the implementation. When many
changes are convoluted into one single benchmarkable, it gets increasingly difficult to attribute
an observation to a single change - in the worst case, an optimization can obscure a regression
when both are introduced in the same benchmarkable.
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Finding a model / scaled Leios version is an iterative process which requires continuous vali-
dation. It will require P&T to be in constant, close coordination with both implementors and
researchers.

6.7 End-to-end testing

[!WARNING]

TODO: Mostly content directly taken from impact analysis. Expand on motivation
and concreteness of changes. This also feels a bit ouf of touch with the implemen-
tation plan; to be integrated better for a more holistic quality and performance
strategy.

The cardano-node-tests project offers test suites for end-to-end functional testing and mainnet
synchronization testing.

The end-to-end functional test suite checks existing functionalities. It operates on both locally
deployed testnets and persistent testnets such as Preview and Preprod. With over 500 test
cases, it covers a wide spectrum of features, including basic transactions, reward calculation,
governance actions, Plutus scripts and chain rollback.

Linear Leios primarily impacts the consensus component of cardano-node, leaving end-user
experience and existing functionalities unchanged. Consequently, the current test suite can
largely be used to verify cardano-nodes operation after the Leios upgrade, requiring only minor
adjustments.

6.7.1 New end-to-end tests for Leios

New end-to-end tests for Leios will focus on two areas:

• Hard-fork testing from the latest mainnet era to Leios
• Upgrading from the latest mainnet cardano-node release to a Leios-enabled release

6.7.2 New automated upgrade testing test suite

The suite will perform the following actions:

1. Initialize Testnet - Spin up a local testnet, starting in the Byron era, using the latest
mainnet cardano-node release.

2. Initial Functional Tests - Run a subset of the functional tests.
3. Partial Node Upgrade - Upgrade several block-producing nodes to a Leios-enabled

release.
4. Mid-Upgrade Functional Tests - Run another subset of the functional tests.
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5. Cooperation Check - Verify seamless cooperation between nodes running the latest
mainnet cardano-node release and those running a Leios-enabled release on the same
testnet.

6. Full Node Upgrade - Upgrade the remaining nodes to a Leios-enabled release.
7. Leios Hard-Fork - Perform the hard-fork to Leios.
8. Post-Hard-Fork Functional Tests - Run a final subset of the functional tests.

6.8 Node-to-client

[!WARNING]

TODO: concrete discussion on how the cardano-node will need to change on the
N2C interface, based on client interfaces

• Mithril, for example, does use N2C LocalChainSync, but does not check hash
consistency and thus would be compatible with our plans.

7 Glossary

Term Definition

RB Ranking Block - Extended Praos block that announces and
certifies EBs

EB Endorser Block - Additional block containing transaction
references

CertRB Ranking Block containing a certificate
TxRB Ranking Block containing transactions
BLS Boneh-Lynn-Shacham signature scheme using elliptic curve

cryptography
BLS12-381 Specific elliptic curve used in cryptography
PoP Proof-of-Possession - Prevents rogue key attacks in BLS

aggregation
Lhdr Header diffusion period (1 slot)
Lvote Voting period (4 slots)
Ldiff Certificate diffusion period (7 slots)
FFD Freshest-First Delivery - Network priority mechanism
ATK-
LeiosProtocolBurst

Attack where adversary withholds and releases EBs
simultaneously
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